![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-rn | Structured version Visualization version GIF version |
Description: Example for df-rn 5269. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-rn | ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rneq 5498 | . 2 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = ran {〈2, 6〉, 〈3, 9〉}) | |
2 | df-pr 4316 | . . . 4 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
3 | 2 | rneqi 5499 | . . 3 ⊢ ran {〈2, 6〉, 〈3, 9〉} = ran ({〈2, 6〉} ∪ {〈3, 9〉}) |
4 | rnun 5691 | . . 3 ⊢ ran ({〈2, 6〉} ∪ {〈3, 9〉}) = (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) | |
5 | 2nn 11369 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
6 | 5 | elexi 3345 | . . . . . 6 ⊢ 2 ∈ V |
7 | 6 | rnsnop 5768 | . . . . 5 ⊢ ran {〈2, 6〉} = {6} |
8 | 3nn 11370 | . . . . . . 7 ⊢ 3 ∈ ℕ | |
9 | 8 | elexi 3345 | . . . . . 6 ⊢ 3 ∈ V |
10 | 9 | rnsnop 5768 | . . . . 5 ⊢ ran {〈3, 9〉} = {9} |
11 | 7, 10 | uneq12i 3900 | . . . 4 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = ({6} ∪ {9}) |
12 | df-pr 4316 | . . . 4 ⊢ {6, 9} = ({6} ∪ {9}) | |
13 | 11, 12 | eqtr4i 2777 | . . 3 ⊢ (ran {〈2, 6〉} ∪ ran {〈3, 9〉}) = {6, 9} |
14 | 3, 4, 13 | 3eqtri 2778 | . 2 ⊢ ran {〈2, 6〉, 〈3, 9〉} = {6, 9} |
15 | 1, 14 | syl6eq 2802 | 1 ⊢ (𝐹 = {〈2, 6〉, 〈3, 9〉} → ran 𝐹 = {6, 9}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 ∪ cun 3705 {csn 4313 {cpr 4315 〈cop 4319 ran crn 5259 ℕcn 11204 2c2 11254 3c3 11255 6c6 11258 9c9 11261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-1cn 10178 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-nn 11205 df-2 11263 df-3 11264 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |