![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-opab | Structured version Visualization version GIF version |
Description: Example for df-opab 4865. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
ex-opab | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 11307 | . . 3 ⊢ 3 ∈ ℂ | |
2 | 4cn 11310 | . . 3 ⊢ 4 ∈ ℂ | |
3 | 3p1e4 11365 | . . 3 ⊢ (3 + 1) = 4 | |
4 | 1 | elexi 3353 | . . . 4 ⊢ 3 ∈ V |
5 | 2 | elexi 3353 | . . . 4 ⊢ 4 ∈ V |
6 | eleq1 2827 | . . . . 5 ⊢ (𝑥 = 3 → (𝑥 ∈ ℂ ↔ 3 ∈ ℂ)) | |
7 | oveq1 6821 | . . . . . 6 ⊢ (𝑥 = 3 → (𝑥 + 1) = (3 + 1)) | |
8 | 7 | eqeq1d 2762 | . . . . 5 ⊢ (𝑥 = 3 → ((𝑥 + 1) = 𝑦 ↔ (3 + 1) = 𝑦)) |
9 | 6, 8 | 3anbi13d 1550 | . . . 4 ⊢ (𝑥 = 3 → ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦))) |
10 | eleq1 2827 | . . . . 5 ⊢ (𝑦 = 4 → (𝑦 ∈ ℂ ↔ 4 ∈ ℂ)) | |
11 | eqeq2 2771 | . . . . 5 ⊢ (𝑦 = 4 → ((3 + 1) = 𝑦 ↔ (3 + 1) = 4)) | |
12 | 10, 11 | 3anbi23d 1551 | . . . 4 ⊢ (𝑦 = 4 → ((3 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (3 + 1) = 𝑦) ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4))) |
13 | eqid 2760 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} | |
14 | 4, 5, 9, 12, 13 | brab 5148 | . . 3 ⊢ (3{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 ↔ (3 ∈ ℂ ∧ 4 ∈ ℂ ∧ (3 + 1) = 4)) |
15 | 1, 2, 3, 14 | mpbir3an 1427 | . 2 ⊢ 3{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4 |
16 | breq 4806 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → (3𝑅4 ↔ 3{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)}4)) | |
17 | 15, 16 | mpbiri 248 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 {copab 4864 (class class class)co 6814 ℂcc 10146 1c1 10149 + caddc 10151 3c3 11283 4c4 11284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-i2m1 10216 ax-1ne0 10217 ax-rrecex 10220 ax-cnre 10221 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-iota 6012 df-fv 6057 df-ov 6817 df-2 11291 df-3 11292 df-4 11293 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |