![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-mod | Structured version Visualization version GIF version |
Description: Example for df-mod 12876. (Contributed by AV, 3-Sep-2021.) |
Ref | Expression |
---|---|
ex-mod | ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3p2e5 11361 | . . . . 5 ⊢ (3 + 2) = 5 | |
2 | 1 | eqcomi 2779 | . . . 4 ⊢ 5 = (3 + 2) |
3 | 2 | oveq1i 6802 | . . 3 ⊢ (5 mod 3) = ((3 + 2) mod 3) |
4 | 2nn0 11510 | . . . 4 ⊢ 2 ∈ ℕ0 | |
5 | 3nn 11387 | . . . 4 ⊢ 3 ∈ ℕ | |
6 | 2lt3 11396 | . . . 4 ⊢ 2 < 3 | |
7 | addmodid 12925 | . . . 4 ⊢ ((2 ∈ ℕ0 ∧ 3 ∈ ℕ ∧ 2 < 3) → ((3 + 2) mod 3) = 2) | |
8 | 4, 5, 6, 7 | mp3an 1571 | . . 3 ⊢ ((3 + 2) mod 3) = 2 |
9 | 3, 8 | eqtri 2792 | . 2 ⊢ (5 mod 3) = 2 |
10 | 2re 11291 | . . . . . 6 ⊢ 2 ∈ ℝ | |
11 | 2lt7 11414 | . . . . . 6 ⊢ 2 < 7 | |
12 | 10, 11 | ltneii 10351 | . . . . 5 ⊢ 2 ≠ 7 |
13 | 2nn 11386 | . . . . . . . 8 ⊢ 2 ∈ ℕ | |
14 | 1lt2 11395 | . . . . . . . 8 ⊢ 1 < 2 | |
15 | 13, 14 | pm3.2i 447 | . . . . . . 7 ⊢ (2 ∈ ℕ ∧ 1 < 2) |
16 | eluz2b2 11963 | . . . . . . 7 ⊢ (2 ∈ (ℤ≥‘2) ↔ (2 ∈ ℕ ∧ 1 < 2)) | |
17 | 15, 16 | mpbir 221 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
18 | 7prm 16023 | . . . . . 6 ⊢ 7 ∈ ℙ | |
19 | dvdsprm 15621 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 7 ∈ ℙ) → (2 ∥ 7 ↔ 2 = 7)) | |
20 | 17, 18, 19 | mp2an 664 | . . . . 5 ⊢ (2 ∥ 7 ↔ 2 = 7) |
21 | 12, 20 | nemtbir 3037 | . . . 4 ⊢ ¬ 2 ∥ 7 |
22 | 2z 11610 | . . . . 5 ⊢ 2 ∈ ℤ | |
23 | 7nn 11391 | . . . . . 6 ⊢ 7 ∈ ℕ | |
24 | 23 | nnzi 11602 | . . . . 5 ⊢ 7 ∈ ℤ |
25 | dvdsnegb 15207 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 7 ∈ ℤ) → (2 ∥ 7 ↔ 2 ∥ -7)) | |
26 | 22, 24, 25 | mp2an 664 | . . . 4 ⊢ (2 ∥ 7 ↔ 2 ∥ -7) |
27 | 21, 26 | mtbi 311 | . . 3 ⊢ ¬ 2 ∥ -7 |
28 | znegcl 11613 | . . . 4 ⊢ (7 ∈ ℤ → -7 ∈ ℤ) | |
29 | mod2eq1n2dvds 15278 | . . . 4 ⊢ (-7 ∈ ℤ → ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7)) | |
30 | 24, 28, 29 | mp2b 10 | . . 3 ⊢ ((-7 mod 2) = 1 ↔ ¬ 2 ∥ -7) |
31 | 27, 30 | mpbir 221 | . 2 ⊢ (-7 mod 2) = 1 |
32 | 9, 31 | pm3.2i 447 | 1 ⊢ ((5 mod 3) = 2 ∧ (-7 mod 2) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 1c1 10138 + caddc 10140 < clt 10275 -cneg 10468 ℕcn 11221 2c2 11271 3c3 11272 5c5 11274 7c7 11276 ℕ0cn0 11493 ℤcz 11578 ℤ≥cuz 11887 mod cmo 12875 ∥ cdvds 15188 ℙcprime 15591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-rp 12035 df-ico 12385 df-fz 12533 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-dvds 15189 df-prm 15592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |