![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-bc | Structured version Visualization version GIF version |
Description: Example for df-bc 13293. (Contributed by AV, 4-Sep-2021.) |
Ref | Expression |
---|---|
ex-bc | ⊢ (5C3) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11283 | . . 3 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 6802 | . 2 ⊢ (5C3) = ((4 + 1)C3) |
3 | 4bc3eq4 13318 | . . . 4 ⊢ (4C3) = 4 | |
4 | 3m1e2 11338 | . . . . . 6 ⊢ (3 − 1) = 2 | |
5 | 4 | oveq2i 6803 | . . . . 5 ⊢ (4C(3 − 1)) = (4C2) |
6 | 4bc2eq6 13319 | . . . . 5 ⊢ (4C2) = 6 | |
7 | 5, 6 | eqtri 2792 | . . . 4 ⊢ (4C(3 − 1)) = 6 |
8 | 3, 7 | oveq12i 6804 | . . 3 ⊢ ((4C3) + (4C(3 − 1))) = (4 + 6) |
9 | 4nn0 11512 | . . . 4 ⊢ 4 ∈ ℕ0 | |
10 | 3z 11611 | . . . 4 ⊢ 3 ∈ ℤ | |
11 | bcpasc 13311 | . . . 4 ⊢ ((4 ∈ ℕ0 ∧ 3 ∈ ℤ) → ((4C3) + (4C(3 − 1))) = ((4 + 1)C3)) | |
12 | 9, 10, 11 | mp2an 664 | . . 3 ⊢ ((4C3) + (4C(3 − 1))) = ((4 + 1)C3) |
13 | 6cn 11303 | . . . 4 ⊢ 6 ∈ ℂ | |
14 | 4cn 11299 | . . . 4 ⊢ 4 ∈ ℂ | |
15 | 6p4e10 11798 | . . . 4 ⊢ (6 + 4) = ;10 | |
16 | 13, 14, 15 | addcomli 10429 | . . 3 ⊢ (4 + 6) = ;10 |
17 | 8, 12, 16 | 3eqtr3i 2800 | . 2 ⊢ ((4 + 1)C3) = ;10 |
18 | 2, 17 | eqtri 2792 | 1 ⊢ (5C3) = ;10 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2144 (class class class)co 6792 0cc0 10137 1c1 10138 + caddc 10140 − cmin 10467 2c2 11271 3c3 11272 4c4 11273 5c5 11274 6c6 11275 ℕ0cn0 11493 ℤcz 11578 ;cdc 11694 Ccbc 13292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-rp 12035 df-fz 12533 df-seq 13008 df-fac 13264 df-bc 13293 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |