Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlksfval Structured version   Visualization version   GIF version

Theorem ewlksfval 26707
 Description: The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021.)
Hypothesis
Ref Expression
ewlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
ewlksfval ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
Distinct variable groups:   𝑓,𝐺,𝑘   𝑆,𝑓,𝑘   𝑓,𝑊,𝑘
Allowed substitution hints:   𝐼(𝑓,𝑘)

Proof of Theorem ewlksfval
Dummy variables 𝑔 𝑖 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ewlks 26704 . . . 4 EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))})
21a1i 11 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))}))
3 fvexd 6364 . . . . . 6 ((𝑔 = 𝐺𝑠 = 𝑆) → (iEdg‘𝑔) ∈ V)
4 simpr 479 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝑔))
5 fveq2 6352 . . . . . . . . . . . . 13 (𝑔 = 𝐺 → (iEdg‘𝑔) = (iEdg‘𝐺))
65adantr 472 . . . . . . . . . . . 12 ((𝑔 = 𝐺𝑠 = 𝑆) → (iEdg‘𝑔) = (iEdg‘𝐺))
76adantr 472 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (iEdg‘𝑔) = (iEdg‘𝐺))
84, 7eqtrd 2794 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑖 = (iEdg‘𝐺))
98dmeqd 5481 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → dom 𝑖 = dom (iEdg‘𝐺))
10 wrdeq 13513 . . . . . . . . 9 (dom 𝑖 = dom (iEdg‘𝐺) → Word dom 𝑖 = Word dom (iEdg‘𝐺))
119, 10syl 17 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → Word dom 𝑖 = Word dom (iEdg‘𝐺))
1211eleq2d 2825 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑓 ∈ Word dom 𝑖𝑓 ∈ Word dom (iEdg‘𝐺)))
13 simpr 479 . . . . . . . . . 10 ((𝑔 = 𝐺𝑠 = 𝑆) → 𝑠 = 𝑆)
1413adantr 472 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → 𝑠 = 𝑆)
158fveq1d 6354 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))))
168fveq1d 6354 . . . . . . . . . . 11 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑖‘(𝑓𝑘)) = ((iEdg‘𝐺)‘(𝑓𝑘)))
1715, 16ineq12d 3958 . . . . . . . . . 10 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))) = (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))
1817fveq2d 6356 . . . . . . . . 9 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) = (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))
1914, 18breq12d 4817 . . . . . . . 8 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) ↔ 𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))))
2019ralbidv 3124 . . . . . . 7 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))))
2112, 20anbi12d 749 . . . . . 6 (((𝑔 = 𝐺𝑠 = 𝑆) ∧ 𝑖 = (iEdg‘𝑔)) → ((𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))))
223, 21sbcied 3613 . . . . 5 ((𝑔 = 𝐺𝑠 = 𝑆) → ([(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))))
2322abbidv 2879 . . . 4 ((𝑔 = 𝐺𝑠 = 𝑆) → {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
2423adantl 473 . . 3 (((𝐺𝑊𝑆 ∈ ℕ0*) ∧ (𝑔 = 𝐺𝑠 = 𝑆)) → {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
25 elex 3352 . . . 4 (𝐺𝑊𝐺 ∈ V)
2625adantr 472 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → 𝐺 ∈ V)
27 simpr 479 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → 𝑆 ∈ ℕ0*)
28 df-rab 3059 . . . 4 {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))}
29 fvex 6362 . . . . . . . 8 (iEdg‘𝐺) ∈ V
3029dmex 7264 . . . . . . 7 dom (iEdg‘𝐺) ∈ V
3130wrdexi 13503 . . . . . 6 Word dom (iEdg‘𝐺) ∈ V
3231rabex 4964 . . . . 5 {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} ∈ V
3332a1i 11 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∈ Word dom (iEdg‘𝐺) ∣ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))} ∈ V)
3428, 33syl5eqelr 2844 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))} ∈ V)
352, 24, 26, 27, 34ovmpt2d 6953 . 2 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))})
36 ewlksfval.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
3736eqcomi 2769 . . . . . . . 8 (iEdg‘𝐺) = 𝐼
3837a1i 11 . . . . . . 7 ((𝐺𝑊𝑆 ∈ ℕ0*) → (iEdg‘𝐺) = 𝐼)
3938dmeqd 5481 . . . . . 6 ((𝐺𝑊𝑆 ∈ ℕ0*) → dom (iEdg‘𝐺) = dom 𝐼)
40 wrdeq 13513 . . . . . 6 (dom (iEdg‘𝐺) = dom 𝐼 → Word dom (iEdg‘𝐺) = Word dom 𝐼)
4139, 40syl 17 . . . . 5 ((𝐺𝑊𝑆 ∈ ℕ0*) → Word dom (iEdg‘𝐺) = Word dom 𝐼)
4241eleq2d 2825 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝑓 ∈ Word dom (iEdg‘𝐺) ↔ 𝑓 ∈ Word dom 𝐼))
4338fveq1d 6354 . . . . . . . 8 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) = (𝐼‘(𝑓‘(𝑘 − 1))))
4438fveq1d 6354 . . . . . . . 8 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((iEdg‘𝐺)‘(𝑓𝑘)) = (𝐼‘(𝑓𝑘)))
4543, 44ineq12d 3958 . . . . . . 7 ((𝐺𝑊𝑆 ∈ ℕ0*) → (((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))) = ((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))
4645fveq2d 6356 . . . . . 6 ((𝐺𝑊𝑆 ∈ ℕ0*) → (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) = (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))
4746breq2d 4816 . . . . 5 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) ↔ 𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))))
4847ralbidv 3124 . . . 4 ((𝐺𝑊𝑆 ∈ ℕ0*) → (∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))) ↔ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘))))))
4942, 48anbi12d 749 . . 3 ((𝐺𝑊𝑆 ∈ ℕ0*) → ((𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘))))) ↔ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))))
5049abbidv 2879 . 2 ((𝐺𝑊𝑆 ∈ ℕ0*) → {𝑓 ∣ (𝑓 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘(((iEdg‘𝐺)‘(𝑓‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝑓𝑘)))))} = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
5135, 50eqtrd 2794 1 ((𝐺𝑊𝑆 ∈ ℕ0*) → (𝐺 EdgWalks 𝑆) = {𝑓 ∣ (𝑓 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑆 ≤ (♯‘((𝐼‘(𝑓‘(𝑘 − 1))) ∩ (𝐼‘(𝑓𝑘)))))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {cab 2746  ∀wral 3050  {crab 3054  Vcvv 3340  [wsbc 3576   ∩ cin 3714   class class class wbr 4804  dom cdm 5266  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  1c1 10129   ≤ cle 10267   − cmin 10458  ℕ0*cxnn0 11555  ..^cfzo 12659  ♯chash 13311  Word cword 13477  iEdgciedg 26074   EdgWalks cewlks 26701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-ewlks 26704 This theorem is referenced by:  isewlk  26708
 Copyright terms: Public domain W3C validator