MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ewlkprop Structured version   Visualization version   GIF version

Theorem ewlkprop 26555
Description: Properties of an s-walk of edges. (Contributed by AV, 4-Jan-2021.)
Hypothesis
Ref Expression
ewlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
ewlkprop (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
Distinct variable groups:   𝑘,𝐺   𝑆,𝑘   𝑘,𝐹
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem ewlkprop
Dummy variables 𝑓 𝑔 𝑖 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ewlks 26550 . . 3 EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(#‘𝑓))𝑠 ≤ (#‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))})
21elmpt2cl 6918 . 2 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*))
3 simpr 476 . . 3 ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) → (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*))
4 ewlksfval.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
54isewlk 26554 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*𝐹 ∈ (𝐺 EdgWalks 𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))))
653expa 1284 . . . . . . 7 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) ↔ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))))
76biimpd 219 . . . . . 6 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ (𝐺 EdgWalks 𝑆)) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))))
87expcom 450 . . . . 5 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ (𝐺 EdgWalks 𝑆) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))))
98pm2.43a 54 . . . 4 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))))
109imp 444 . . 3 ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) → (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
11 3anass 1059 . . 3 (((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))) ↔ ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ (𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))))
123, 10, 11sylanbrc 699 . 2 ((𝐹 ∈ (𝐺 EdgWalks 𝑆) ∧ (𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*)) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
132, 12mpdan 703 1 (𝐹 ∈ (𝐺 EdgWalks 𝑆) → ((𝐺 ∈ V ∧ 𝑆 ∈ ℕ0*) ∧ 𝐹 ∈ Word dom 𝐼 ∧ ∀𝑘 ∈ (1..^(#‘𝐹))𝑆 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wral 2941  Vcvv 3231  [wsbc 3468  cin 3606   class class class wbr 4685  dom cdm 5143  cfv 5926  (class class class)co 6690  1c1 9975  cle 10113  cmin 10304  0*cxnn0 11401  ..^cfzo 12504  #chash 13157  Word cword 13323  iEdgciedg 25920   EdgWalks cewlks 26547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-ewlks 26550
This theorem is referenced by:  ewlkinedg  26556  ewlkle  26557  upgrewlkle2  26558
  Copyright terms: Public domain W3C validator