![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evth2f | Structured version Visualization version GIF version |
Description: A version of evth2 22978 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
evth2f.1 | ⊢ Ⅎ𝑥𝐹 |
evth2f.2 | ⊢ Ⅎ𝑦𝐹 |
evth2f.3 | ⊢ Ⅎ𝑥𝑋 |
evth2f.4 | ⊢ Ⅎ𝑦𝑋 |
evth2f.5 | ⊢ 𝑋 = ∪ 𝐽 |
evth2f.6 | ⊢ 𝐾 = (topGen‘ran (,)) |
evth2f.7 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
evth2f.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
evth2f.9 | ⊢ (𝜑 → 𝑋 ≠ ∅) |
Ref | Expression |
---|---|
evth2f | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evth2f.5 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | evth2f.6 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
3 | evth2f.7 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
4 | evth2f.8 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
5 | evth2f.9 | . . 3 ⊢ (𝜑 → 𝑋 ≠ ∅) | |
6 | 1, 2, 3, 4, 5 | evth2 22978 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏)) |
7 | nfcv 2912 | . . . 4 ⊢ Ⅎ𝑎𝑋 | |
8 | evth2f.3 | . . . 4 ⊢ Ⅎ𝑥𝑋 | |
9 | evth2f.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
10 | nfcv 2912 | . . . . . . 7 ⊢ Ⅎ𝑥𝑎 | |
11 | 9, 10 | nffv 6339 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑎) |
12 | nfcv 2912 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
13 | nfcv 2912 | . . . . . . 7 ⊢ Ⅎ𝑥𝑏 | |
14 | 9, 13 | nffv 6339 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑏) |
15 | 11, 12, 14 | nfbr 4831 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑎) ≤ (𝐹‘𝑏) |
16 | 8, 15 | nfral 3093 | . . . 4 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) |
17 | nfv 1994 | . . . 4 ⊢ Ⅎ𝑎∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) | |
18 | fveq2 6332 | . . . . . 6 ⊢ (𝑎 = 𝑥 → (𝐹‘𝑎) = (𝐹‘𝑥)) | |
19 | 18 | breq1d 4794 | . . . . 5 ⊢ (𝑎 = 𝑥 → ((𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
20 | 19 | ralbidv 3134 | . . . 4 ⊢ (𝑎 = 𝑥 → (∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏))) |
21 | 7, 8, 16, 17, 20 | cbvrexf 3314 | . . 3 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏)) |
22 | nfcv 2912 | . . . . 5 ⊢ Ⅎ𝑏𝑋 | |
23 | evth2f.4 | . . . . 5 ⊢ Ⅎ𝑦𝑋 | |
24 | evth2f.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
25 | nfcv 2912 | . . . . . . 7 ⊢ Ⅎ𝑦𝑥 | |
26 | 24, 25 | nffv 6339 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑥) |
27 | nfcv 2912 | . . . . . 6 ⊢ Ⅎ𝑦 ≤ | |
28 | nfcv 2912 | . . . . . . 7 ⊢ Ⅎ𝑦𝑏 | |
29 | 24, 28 | nffv 6339 | . . . . . 6 ⊢ Ⅎ𝑦(𝐹‘𝑏) |
30 | 26, 27, 29 | nfbr 4831 | . . . . 5 ⊢ Ⅎ𝑦(𝐹‘𝑥) ≤ (𝐹‘𝑏) |
31 | nfv 1994 | . . . . 5 ⊢ Ⅎ𝑏(𝐹‘𝑥) ≤ (𝐹‘𝑦) | |
32 | fveq2 6332 | . . . . . 6 ⊢ (𝑏 = 𝑦 → (𝐹‘𝑏) = (𝐹‘𝑦)) | |
33 | 32 | breq2d 4796 | . . . . 5 ⊢ (𝑏 = 𝑦 → ((𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ (𝐹‘𝑥) ≤ (𝐹‘𝑦))) |
34 | 22, 23, 30, 31, 33 | cbvralf 3313 | . . . 4 ⊢ (∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
35 | 34 | rexbii 3188 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
36 | 21, 35 | bitri 264 | . 2 ⊢ (∃𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘𝑎) ≤ (𝐹‘𝑏) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
37 | 6, 36 | sylib 208 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘𝑥) ≤ (𝐹‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 Ⅎwnfc 2899 ≠ wne 2942 ∀wral 3060 ∃wrex 3061 ∅c0 4061 ∪ cuni 4572 class class class wbr 4784 ran crn 5250 ‘cfv 6031 (class class class)co 6792 ≤ cle 10276 (,)cioo 12379 topGenctg 16305 Cn ccn 21248 Compccmp 21409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-icc 12386 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cn 21251 df-cnp 21252 df-cmp 21410 df-tx 21585 df-hmeo 21778 df-xms 22344 df-ms 22345 df-tms 22346 |
This theorem is referenced by: stoweidlem29 40757 |
Copyright terms: Public domain | W3C validator |