MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evpmodpmf1o Structured version   Visualization version   GIF version

Theorem evpmodpmf1o 20164
Description: The function for performing an even permutation after a fixed odd permutation is one to one onto all odd permutations. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
evpmodpmf1o.s 𝑆 = (SymGrp‘𝐷)
evpmodpmf1o.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
evpmodpmf1o ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷)))
Distinct variable groups:   𝑆,𝑓   𝐷,𝑓   𝑃,𝑓   𝑓,𝐹

Proof of Theorem evpmodpmf1o
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpll 807 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐷 ∈ Fin)
2 evpmodpmf1o.s . . . . . . 7 𝑆 = (SymGrp‘𝐷)
32symggrp 18040 . . . . . 6 (𝐷 ∈ Fin → 𝑆 ∈ Grp)
43ad2antrr 764 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑆 ∈ Grp)
5 eldifi 3875 . . . . . 6 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹𝑃)
65ad2antlr 765 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝐹𝑃)
7 evpmodpmf1o.p . . . . . . . 8 𝑃 = (Base‘𝑆)
82, 7evpmss 20154 . . . . . . 7 (pmEven‘𝐷) ⊆ 𝑃
98sseli 3740 . . . . . 6 (𝑓 ∈ (pmEven‘𝐷) → 𝑓𝑃)
109adantl 473 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → 𝑓𝑃)
11 eqid 2760 . . . . . 6 (+g𝑆) = (+g𝑆)
127, 11grpcl 17651 . . . . 5 ((𝑆 ∈ Grp ∧ 𝐹𝑃𝑓𝑃) → (𝐹(+g𝑆)𝑓) ∈ 𝑃)
134, 6, 10, 12syl3anc 1477 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g𝑆)𝑓) ∈ 𝑃)
14 eqid 2760 . . . . . . . 8 (pmSgn‘𝐷) = (pmSgn‘𝐷)
15 eqid 2760 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
162, 14, 15psgnghm2 20149 . . . . . . 7 (𝐷 ∈ Fin → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1716ad2antrr 764 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
18 prex 5058 . . . . . . . 8 {1, -1} ∈ V
19 eqid 2760 . . . . . . . . . 10 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
20 cnfldmul 19974 . . . . . . . . . 10 · = (.r‘ℂfld)
2119, 20mgpplusg 18713 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
2215, 21ressplusg 16215 . . . . . . . 8 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
2318, 22ax-mp 5 . . . . . . 7 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
247, 11, 23ghmlin 17886 . . . . . 6 (((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃𝑓𝑃) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)))
2517, 6, 10, 24syl3anc 1477 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)))
262, 7, 14psgnodpm 20156 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
2726adantr 472 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝐹) = -1)
282, 7, 14psgnevpm 20157 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1)
2928adantlr 753 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘𝑓) = 1)
3027, 29oveq12d 6832 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = (-1 · 1))
31 ax-1cn 10206 . . . . . . 7 1 ∈ ℂ
3231mulm1i 10687 . . . . . 6 (-1 · 1) = -1
3330, 32syl6eq 2810 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((pmSgn‘𝐷)‘𝐹) · ((pmSgn‘𝐷)‘𝑓)) = -1)
3425, 33eqtrd 2794 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = -1)
352, 7, 14psgnodpmr 20158 . . . 4 ((𝐷 ∈ Fin ∧ (𝐹(+g𝑆)𝑓) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(𝐹(+g𝑆)𝑓)) = -1) → (𝐹(+g𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷)))
361, 13, 34, 35syl3anc 1477 . . 3 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (𝐹(+g𝑆)𝑓) ∈ (𝑃 ∖ (pmEven‘𝐷)))
37 eqid 2760 . . 3 (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) = (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))
3836, 37fmptd 6549 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)⟶(𝑃 ∖ (pmEven‘𝐷)))
393ad2antrr 764 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑆 ∈ Grp)
40 eqid 2760 . . . . . . . 8 (invg𝑆) = (invg𝑆)
417, 40grpinvcl 17688 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → ((invg𝑆)‘𝐹) ∈ 𝑃)
423, 5, 41syl2an 495 . . . . . 6 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) ∈ 𝑃)
4342adantr 472 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) ∈ 𝑃)
44 eldifi 3875 . . . . . 6 (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝑔𝑃)
4544adantl 473 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑔𝑃)
467, 11grpcl 17651 . . . . 5 ((𝑆 ∈ Grp ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃)
4739, 43, 45, 46syl3anc 1477 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃)
4816ad2antrr 764 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
497, 11, 23ghmlin 17886 . . . . . 6 (((pmSgn‘𝐷) ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)))
5048, 43, 45, 49syl3anc 1477 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)))
512, 7, 40symginv 18042 . . . . . . . . 9 (𝐹𝑃 → ((invg𝑆)‘𝐹) = 𝐹)
525, 51syl 17 . . . . . . . 8 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → ((invg𝑆)‘𝐹) = 𝐹)
5352ad2antlr 765 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((invg𝑆)‘𝐹) = 𝐹)
5453fveq2d 6357 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) = ((pmSgn‘𝐷)‘𝐹))
552, 7, 14psgnodpm 20156 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1)
5655adantlr 753 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝑔) = -1)
5754, 56oveq12d 6832 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘((invg𝑆)‘𝐹)) · ((pmSgn‘𝐷)‘𝑔)) = (((pmSgn‘𝐷)‘𝐹) · -1))
58 simpll 807 . . . . . . . . 9 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐷 ∈ Fin)
595ad2antlr 765 . . . . . . . . 9 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹𝑃)
602, 14, 7psgninv 20150 . . . . . . . . 9 ((𝐷 ∈ Fin ∧ 𝐹𝑃) → ((pmSgn‘𝐷)‘𝐹) = ((pmSgn‘𝐷)‘𝐹))
6158, 59, 60syl2anc 696 . . . . . . . 8 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = ((pmSgn‘𝐷)‘𝐹))
6226adantr 472 . . . . . . . 8 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
6361, 62eqtrd 2794 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘𝐹) = -1)
6463oveq1d 6829 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘𝐹) · -1) = (-1 · -1))
65 neg1mulneg1e1 11457 . . . . . 6 (-1 · -1) = 1
6664, 65syl6eq 2810 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((pmSgn‘𝐷)‘𝐹) · -1) = 1)
6750, 57, 663eqtrd 2798 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)
682, 7, 14psgnevpmb 20155 . . . . 5 (𝐷 ∈ Fin → ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)))
6968ad2antrr 764 . . . 4 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷) ↔ ((((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ 𝑃 ∧ ((pmSgn‘𝐷)‘(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 1)))
7047, 67, 69mpbir2and 995 . . 3 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) ∈ (pmEven‘𝐷))
71 eqid 2760 . . 3 (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))
7270, 71fmptd 6549 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)):(𝑃 ∖ (pmEven‘𝐷))⟶(pmEven‘𝐷))
73 eqidd 2761 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) = (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)))
74 eqidd 2761 . . . . 5 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
75 oveq2 6822 . . . . 5 (𝑔 = (𝐹(+g𝑆)𝑓) → (((invg𝑆)‘𝐹)(+g𝑆)𝑔) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
7636, 73, 74, 75fmptco 6560 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓))))
77 eqid 2760 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
787, 11, 77, 40grplinv 17689 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → (((invg𝑆)‘𝐹)(+g𝑆)𝐹) = (0g𝑆))
794, 6, 78syl2anc 696 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg𝑆)‘𝐹)(+g𝑆)𝐹) = (0g𝑆))
8079oveq1d 6829 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = ((0g𝑆)(+g𝑆)𝑓))
8142adantr 472 . . . . . . 7 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((invg𝑆)‘𝐹) ∈ 𝑃)
827, 11grpass 17652 . . . . . . 7 ((𝑆 ∈ Grp ∧ (((invg𝑆)‘𝐹) ∈ 𝑃𝐹𝑃𝑓𝑃)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
834, 81, 6, 10, 82syl13anc 1479 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((((invg𝑆)‘𝐹)(+g𝑆)𝐹)(+g𝑆)𝑓) = (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)))
847, 11, 77grplid 17673 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑓𝑃) → ((0g𝑆)(+g𝑆)𝑓) = 𝑓)
854, 10, 84syl2anc 696 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → ((0g𝑆)(+g𝑆)𝑓) = 𝑓)
8680, 83, 853eqtr3d 2802 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑓 ∈ (pmEven‘𝐷)) → (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓)) = 𝑓)
8786mpteq2dva 4896 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (((invg𝑆)‘𝐹)(+g𝑆)(𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓))
8876, 87eqtrd 2794 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓))
89 mptresid 5614 . . 3 (𝑓 ∈ (pmEven‘𝐷) ↦ 𝑓) = ( I ↾ (pmEven‘𝐷))
9088, 89syl6eq 2810 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔)) ∘ (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓))) = ( I ↾ (pmEven‘𝐷)))
91 oveq2 6822 . . . . 5 (𝑓 = (((invg𝑆)‘𝐹)(+g𝑆)𝑔) → (𝐹(+g𝑆)𝑓) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
9270, 74, 73, 91fmptco 6560 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔))))
937, 11, 77, 40grprinv 17690 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝐹𝑃) → (𝐹(+g𝑆)((invg𝑆)‘𝐹)) = (0g𝑆))
943, 5, 93syl2an 495 . . . . . . . 8 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g𝑆)((invg𝑆)‘𝐹)) = (0g𝑆))
9594oveq1d 6829 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = ((0g𝑆)(+g𝑆)𝑔))
9695adantr 472 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = ((0g𝑆)(+g𝑆)𝑔))
977, 11grpass 17652 . . . . . . 7 ((𝑆 ∈ Grp ∧ (𝐹𝑃 ∧ ((invg𝑆)‘𝐹) ∈ 𝑃𝑔𝑃)) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
9839, 59, 43, 45, 97syl13anc 1479 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝐹(+g𝑆)((invg𝑆)‘𝐹))(+g𝑆)𝑔) = (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)))
997, 11, 77grplid 17673 . . . . . . 7 ((𝑆 ∈ Grp ∧ 𝑔𝑃) → ((0g𝑆)(+g𝑆)𝑔) = 𝑔)
10039, 45, 99syl2anc 696 . . . . . 6 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((0g𝑆)(+g𝑆)𝑔) = 𝑔)
10196, 98, 1003eqtr3d 2802 . . . . 5 (((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) ∧ 𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔)) = 𝑔)
102101mpteq2dva 4896 . . . 4 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (𝐹(+g𝑆)(((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔))
10392, 102eqtrd 2794 . . 3 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔))
104 mptresid 5614 . . 3 (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ 𝑔) = ( I ↾ (𝑃 ∖ (pmEven‘𝐷)))
105103, 104syl6eq 2810 . 2 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)) ∘ (𝑔 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↦ (((invg𝑆)‘𝐹)(+g𝑆)𝑔))) = ( I ↾ (𝑃 ∖ (pmEven‘𝐷))))
10638, 72, 90, 105fcof1od 6713 1 ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑓 ∈ (pmEven‘𝐷) ↦ (𝐹(+g𝑆)𝑓)):(pmEven‘𝐷)–1-1-onto→(𝑃 ∖ (pmEven‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cdif 3712  {cpr 4323  cmpt 4881   I cid 5173  ccnv 5265  cres 5268  ccom 5270  1-1-ontowf1o 6048  cfv 6049  (class class class)co 6814  Fincfn 8123  1c1 10149   · cmul 10153  -cneg 10479  Basecbs 16079  s cress 16080  +gcplusg 16163  0gc0g 16322  Grpcgrp 17643  invgcminusg 17644   GrpHom cghm 17878  SymGrpcsymg 18017  pmSgncpsgn 18129  pmEvencevpm 18130  mulGrpcmgp 18709  fldccnfld 19968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-word 13505  df-lsw 13506  df-concat 13507  df-s1 13508  df-substr 13509  df-splice 13510  df-reverse 13511  df-s2 13813  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-gsum 16325  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-submnd 17557  df-grp 17646  df-minusg 17647  df-subg 17812  df-ghm 17879  df-gim 17922  df-oppg 17996  df-symg 18018  df-pmtr 18082  df-psgn 18131  df-evpm 18132  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-drng 18971  df-cnfld 19969
This theorem is referenced by:  mdetralt  20636
  Copyright terms: Public domain W3C validator