MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsval2 Structured version   Visualization version   GIF version

Theorem evlsval2 19722
Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsval.w 𝑊 = (𝐼 mPoly 𝑈)
evlsval.v 𝑉 = (𝐼 mVar 𝑈)
evlsval.u 𝑈 = (𝑆s 𝑅)
evlsval.t 𝑇 = (𝑆s (𝐵𝑚 𝐼))
evlsval.b 𝐵 = (Base‘𝑆)
evlsval.a 𝐴 = (algSc‘𝑊)
evlsval.x 𝑋 = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥}))
evlsval.y 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))
Assertion
Ref Expression
evlsval2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
Distinct variable groups:   𝑔,𝐼,𝑥   𝑥,𝑅   𝑆,𝑔,𝑥   𝐵,𝑔,𝑥   𝑅,𝑔   𝑥,𝑇   𝑔,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑔)   𝑄(𝑥,𝑔)   𝑇(𝑔)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑥,𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)

Proof of Theorem evlsval2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 evlsval.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
2 evlsval.w . . . 4 𝑊 = (𝐼 mPoly 𝑈)
3 evlsval.v . . . 4 𝑉 = (𝐼 mVar 𝑈)
4 evlsval.u . . . 4 𝑈 = (𝑆s 𝑅)
5 evlsval.t . . . 4 𝑇 = (𝑆s (𝐵𝑚 𝐼))
6 evlsval.b . . . 4 𝐵 = (Base‘𝑆)
7 evlsval.a . . . 4 𝐴 = (algSc‘𝑊)
8 evlsval.x . . . 4 𝑋 = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥}))
9 evlsval.y . . . 4 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)))
101, 2, 3, 4, 5, 6, 7, 8, 9evlsval 19721 . . 3 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)))
11 eqid 2760 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
12 elex 3352 . . . . . 6 (𝐼𝑍𝐼 ∈ V)
13123ad2ant1 1128 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝐼 ∈ V)
144subrgcrng 18986 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
15143adant1 1125 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
16 simp2 1132 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ CRing)
17 ovex 6841 . . . . . 6 (𝐵𝑚 𝐼) ∈ V
185pwscrng 18817 . . . . . 6 ((𝑆 ∈ CRing ∧ (𝐵𝑚 𝐼) ∈ V) → 𝑇 ∈ CRing)
1916, 17, 18sylancl 697 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑇 ∈ CRing)
206subrgss 18983 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
21203ad2ant3 1130 . . . . . . . 8 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
2221resmptd 5610 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥𝑅 ↦ ((𝐵𝑚 𝐼) × {𝑥})))
2322, 8syl6eqr 2812 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ↾ 𝑅) = 𝑋)
24 crngring 18758 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
25243ad2ant2 1129 . . . . . . . 8 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ Ring)
26 eqid 2760 . . . . . . . . 9 (𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) = (𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥}))
275, 6, 26pwsdiagrhm 19015 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝐵𝑚 𝐼) ∈ V) → (𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
2825, 17, 27sylancl 697 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
29 simp3 1133 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ (SubRing‘𝑆))
304resrhm 19011 . . . . . . 7 (((𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3128, 29, 30syl2anc 696 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵𝑚 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3223, 31eqeltrrd 2840 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑋 ∈ (𝑈 RingHom 𝑇))
33 fvex 6362 . . . . . . . . . . . 12 (Base‘𝑆) ∈ V
346, 33eqeltri 2835 . . . . . . . . . . 11 𝐵 ∈ V
35 simpl1 1228 . . . . . . . . . . 11 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → 𝐼𝑍)
36 elmapg 8036 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ 𝐼𝑍) → (𝑔 ∈ (𝐵𝑚 𝐼) ↔ 𝑔:𝐼𝐵))
3734, 35, 36sylancr 698 . . . . . . . . . 10 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵𝑚 𝐼) ↔ 𝑔:𝐼𝐵))
3837biimpa 502 . . . . . . . . 9 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵𝑚 𝐼)) → 𝑔:𝐼𝐵)
39 simplr 809 . . . . . . . . 9 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵𝑚 𝐼)) → 𝑥𝐼)
4038, 39ffvelrnd 6523 . . . . . . . 8 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵𝑚 𝐼)) → (𝑔𝑥) ∈ 𝐵)
41 eqid 2760 . . . . . . . 8 (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)) = (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥))
4240, 41fmptd 6548 . . . . . . 7 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)):(𝐵𝑚 𝐼)⟶𝐵)
43 simpl2 1230 . . . . . . . 8 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → 𝑆 ∈ CRing)
445, 6, 11pwselbasb 16350 . . . . . . . 8 ((𝑆 ∈ CRing ∧ (𝐵𝑚 𝐼) ∈ V) → ((𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)):(𝐵𝑚 𝐼)⟶𝐵))
4543, 17, 44sylancl 697 . . . . . . 7 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → ((𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)):(𝐵𝑚 𝐼)⟶𝐵))
4642, 45mpbird 247 . . . . . 6 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵𝑚 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇))
4746, 9fmptd 6548 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑌:𝐼⟶(Base‘𝑇))
482, 11, 7, 3, 13, 15, 19, 32, 47evlseu 19718 . . . 4 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌))
49 riotacl2 6787 . . . 4 (∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌) → (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
5048, 49syl 17 . . 3 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
5110, 50eqeltrd 2839 . 2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
52 coeq1 5435 . . . . 5 (𝑚 = 𝑄 → (𝑚𝐴) = (𝑄𝐴))
5352eqeq1d 2762 . . . 4 (𝑚 = 𝑄 → ((𝑚𝐴) = 𝑋 ↔ (𝑄𝐴) = 𝑋))
54 coeq1 5435 . . . . 5 (𝑚 = 𝑄 → (𝑚𝑉) = (𝑄𝑉))
5554eqeq1d 2762 . . . 4 (𝑚 = 𝑄 → ((𝑚𝑉) = 𝑌 ↔ (𝑄𝑉) = 𝑌))
5653, 55anbi12d 749 . . 3 (𝑚 = 𝑄 → (((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌) ↔ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
5756elrab 3504 . 2 (𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)} ↔ (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
5851, 57sylib 208 1 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  ∃!wreu 3052  {crab 3054  Vcvv 3340  wss 3715  {csn 4321  cmpt 4881   × cxp 5264  cres 5268  ccom 5270  wf 6045  cfv 6049  crio 6773  (class class class)co 6813  𝑚 cmap 8023  Basecbs 16059  s cress 16060  s cpws 16309  Ringcrg 18747  CRingccrg 18748   RingHom crh 18914  SubRingcsubrg 18978  algSccascl 19513   mVar cmvr 19554   mPoly cmpl 19555   evalSub ces 19706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-oi 8580  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-fzo 12660  df-seq 12996  df-hash 13312  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-hom 16168  df-cco 16169  df-0g 16304  df-gsum 16305  df-prds 16310  df-pws 16312  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-srg 18706  df-ring 18749  df-cring 18750  df-rnghom 18917  df-subrg 18980  df-lmod 19067  df-lss 19135  df-lsp 19174  df-assa 19514  df-asp 19515  df-ascl 19516  df-psr 19558  df-mvr 19559  df-mpl 19560  df-evls 19708
This theorem is referenced by:  evlsrhm  19723  evlssca  19724  evlsvar  19725
  Copyright terms: Public domain W3C validator