Step | Hyp | Ref
| Expression |
1 | | evlslem1.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ CRing) |
2 | | crngring 18679 |
. . . . . 6
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Ring) |
4 | 3 | adantr 472 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑆 ∈ Ring) |
5 | | evlslem1.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
6 | | evlslem1.k |
. . . . . . . 8
⊢ 𝐾 = (Base‘𝑅) |
7 | | evlslem1.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑆) |
8 | 6, 7 | rhmf 18849 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾⟶𝐶) |
9 | 5, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐾⟶𝐶) |
10 | 9 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐹:𝐾⟶𝐶) |
11 | | evlslem1.p |
. . . . . . 7
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
12 | | evlslem1.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑃) |
13 | | evlslem1.d |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
14 | | evlslem6.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
15 | 11, 6, 12, 13, 14 | mplelf 19556 |
. . . . . 6
⊢ (𝜑 → 𝑌:𝐷⟶𝐾) |
16 | 15 | ffvelrnda 6474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑌‘𝑏) ∈ 𝐾) |
17 | 10, 16 | ffvelrnd 6475 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑌‘𝑏)) ∈ 𝐶) |
18 | | evlslem1.t |
. . . . . 6
⊢ 𝑇 = (mulGrp‘𝑆) |
19 | 18, 7 | mgpbas 18616 |
. . . . 5
⊢ 𝐶 = (Base‘𝑇) |
20 | | evlslem1.x |
. . . . 5
⊢ ↑ =
(.g‘𝑇) |
21 | | eqid 2724 |
. . . . 5
⊢
(0g‘𝑇) = (0g‘𝑇) |
22 | 18 | crngmgp 18676 |
. . . . . . 7
⊢ (𝑆 ∈ CRing → 𝑇 ∈ CMnd) |
23 | 1, 22 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ CMnd) |
24 | 23 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑇 ∈ CMnd) |
25 | | simpr 479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐷) |
26 | | evlslem1.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
27 | 26 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐺:𝐼⟶𝐶) |
28 | | evlslem1.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ V) |
29 | 28 | adantr 472 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝐼 ∈ V) |
30 | 13, 19, 20, 21, 24, 25, 27, 29 | psrbagev2 19634 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)) ∈ 𝐶) |
31 | | evlslem1.m |
. . . . 5
⊢ · =
(.r‘𝑆) |
32 | 7, 31 | ringcl 18682 |
. . . 4
⊢ ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌‘𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺))) ∈ 𝐶) |
33 | 4, 17, 30, 32 | syl3anc 1439 |
. . 3
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺))) ∈ 𝐶) |
34 | | eqid 2724 |
. . 3
⊢ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) |
35 | 33, 34 | fmptd 6500 |
. 2
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))):𝐷⟶𝐶) |
36 | | ovexd 6795 |
. . . . 5
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) |
37 | 13, 36 | rabexd 4921 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
38 | | mptexg 6600 |
. . . 4
⊢ (𝐷 ∈ V → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) ∈
V) |
39 | 37, 38 | syl 17 |
. . 3
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) ∈
V) |
40 | | funmpt 6039 |
. . . 4
⊢ Fun
(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) |
41 | 40 | a1i 11 |
. . 3
⊢ (𝜑 → Fun (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺))))) |
42 | | fvexd 6316 |
. . 3
⊢ (𝜑 → (0g‘𝑆) ∈ V) |
43 | | eqid 2724 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
44 | | evlslem1.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
45 | 11, 12, 43, 14, 44 | mplelsfi 19614 |
. . . 4
⊢ (𝜑 → 𝑌 finSupp (0g‘𝑅)) |
46 | 45 | fsuppimpd 8398 |
. . 3
⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) ∈ Fin) |
47 | 15 | feqmptd 6363 |
. . . . . . 7
⊢ (𝜑 → 𝑌 = (𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏))) |
48 | 47 | oveq1d 6780 |
. . . . . 6
⊢ (𝜑 → (𝑌 supp (0g‘𝑅)) = ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅))) |
49 | | eqimss2 3764 |
. . . . . 6
⊢ ((𝑌 supp (0g‘𝑅)) = ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) → ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) ⊆ (𝑌 supp (0g‘𝑅))) |
50 | 48, 49 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (𝑌‘𝑏)) supp (0g‘𝑅)) ⊆ (𝑌 supp (0g‘𝑅))) |
51 | | rhmghm 18848 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
52 | | eqid 2724 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
53 | 43, 52 | ghmid 17788 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
54 | 5, 51, 53 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝐹‘(0g‘𝑅)) = (0g‘𝑆)) |
55 | | fvexd 6316 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝑌‘𝑏) ∈ V) |
56 | | fvexd 6316 |
. . . . 5
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
57 | 50, 54, 55, 56 | suppssfv 7451 |
. . . 4
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ (𝐹‘(𝑌‘𝑏))) supp (0g‘𝑆)) ⊆ (𝑌 supp (0g‘𝑅))) |
58 | 7, 31, 52 | ringlz 18708 |
. . . . 5
⊢ ((𝑆 ∈ Ring ∧ 𝑥 ∈ 𝐶) → ((0g‘𝑆) · 𝑥) = (0g‘𝑆)) |
59 | 3, 58 | sylan 489 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → ((0g‘𝑆) · 𝑥) = (0g‘𝑆)) |
60 | | fvexd 6316 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → (𝐹‘(𝑌‘𝑏)) ∈ V) |
61 | 57, 59, 60, 30, 42 | suppssov1 7447 |
. . 3
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) supp
(0g‘𝑆))
⊆ (𝑌 supp
(0g‘𝑅))) |
62 | | suppssfifsupp 8406 |
. . 3
⊢ ((((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) ∈ V ∧ Fun
(𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) ∧
(0g‘𝑆)
∈ V) ∧ ((𝑌 supp
(0g‘𝑅))
∈ Fin ∧ ((𝑏 ∈
𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) supp
(0g‘𝑆))
⊆ (𝑌 supp
(0g‘𝑅))))
→ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) finSupp
(0g‘𝑆)) |
63 | 39, 41, 42, 46, 61, 62 | syl32anc 1447 |
. 2
⊢ (𝜑 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) finSupp
(0g‘𝑆)) |
64 | 35, 63 | jca 555 |
1
⊢ (𝜑 → ((𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))):𝐷⟶𝐶 ∧ (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑌‘𝑏)) · (𝑇 Σg (𝑏 ∘𝑓
↑
𝐺)))) finSupp
(0g‘𝑆))) |