MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlslem6 Structured version   Visualization version   GIF version

Theorem evlslem6 19636
Description: Lemma for evlseu 19639. Finiteness and consistency of the top-level sum. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
evlslem1.p 𝑃 = (𝐼 mPoly 𝑅)
evlslem1.b 𝐵 = (Base‘𝑃)
evlslem1.c 𝐶 = (Base‘𝑆)
evlslem1.k 𝐾 = (Base‘𝑅)
evlslem1.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlslem1.t 𝑇 = (mulGrp‘𝑆)
evlslem1.x = (.g𝑇)
evlslem1.m · = (.r𝑆)
evlslem1.v 𝑉 = (𝐼 mVar 𝑅)
evlslem1.e 𝐸 = (𝑝𝐵 ↦ (𝑆 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))))
evlslem1.i (𝜑𝐼 ∈ V)
evlslem1.r (𝜑𝑅 ∈ CRing)
evlslem1.s (𝜑𝑆 ∈ CRing)
evlslem1.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlslem1.g (𝜑𝐺:𝐼𝐶)
evlslem6.y (𝜑𝑌𝐵)
Assertion
Ref Expression
evlslem6 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
Distinct variable groups:   𝜑,𝑏   𝐶,𝑏   𝐷,𝑏   ,𝐼   𝑅,𝑏   𝑆,𝑏   𝑌,𝑏   ,𝑏
Allowed substitution hints:   𝜑(,𝑝)   𝐵(,𝑝,𝑏)   𝐶(,𝑝)   𝐷(,𝑝)   𝑃(,𝑝,𝑏)   𝑅(,𝑝)   𝑆(,𝑝)   𝑇(,𝑝,𝑏)   · (,𝑝,𝑏)   𝐸(,𝑝,𝑏)   (,𝑝,𝑏)   𝐹(,𝑝,𝑏)   𝐺(,𝑝,𝑏)   𝐼(𝑝,𝑏)   𝐾(,𝑝,𝑏)   𝑉(,𝑝,𝑏)   𝑌(,𝑝)

Proof of Theorem evlslem6
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlslem1.s . . . . . 6 (𝜑𝑆 ∈ CRing)
2 crngring 18679 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
31, 2syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
43adantr 472 . . . 4 ((𝜑𝑏𝐷) → 𝑆 ∈ Ring)
5 evlslem1.f . . . . . . 7 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
6 evlslem1.k . . . . . . . 8 𝐾 = (Base‘𝑅)
7 evlslem1.c . . . . . . . 8 𝐶 = (Base‘𝑆)
86, 7rhmf 18849 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐾𝐶)
95, 8syl 17 . . . . . 6 (𝜑𝐹:𝐾𝐶)
109adantr 472 . . . . 5 ((𝜑𝑏𝐷) → 𝐹:𝐾𝐶)
11 evlslem1.p . . . . . . 7 𝑃 = (𝐼 mPoly 𝑅)
12 evlslem1.b . . . . . . 7 𝐵 = (Base‘𝑃)
13 evlslem1.d . . . . . . 7 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
14 evlslem6.y . . . . . . 7 (𝜑𝑌𝐵)
1511, 6, 12, 13, 14mplelf 19556 . . . . . 6 (𝜑𝑌:𝐷𝐾)
1615ffvelrnda 6474 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ 𝐾)
1710, 16ffvelrnd 6475 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ 𝐶)
18 evlslem1.t . . . . . 6 𝑇 = (mulGrp‘𝑆)
1918, 7mgpbas 18616 . . . . 5 𝐶 = (Base‘𝑇)
20 evlslem1.x . . . . 5 = (.g𝑇)
21 eqid 2724 . . . . 5 (0g𝑇) = (0g𝑇)
2218crngmgp 18676 . . . . . . 7 (𝑆 ∈ CRing → 𝑇 ∈ CMnd)
231, 22syl 17 . . . . . 6 (𝜑𝑇 ∈ CMnd)
2423adantr 472 . . . . 5 ((𝜑𝑏𝐷) → 𝑇 ∈ CMnd)
25 simpr 479 . . . . 5 ((𝜑𝑏𝐷) → 𝑏𝐷)
26 evlslem1.g . . . . . 6 (𝜑𝐺:𝐼𝐶)
2726adantr 472 . . . . 5 ((𝜑𝑏𝐷) → 𝐺:𝐼𝐶)
28 evlslem1.i . . . . . 6 (𝜑𝐼 ∈ V)
2928adantr 472 . . . . 5 ((𝜑𝑏𝐷) → 𝐼 ∈ V)
3013, 19, 20, 21, 24, 25, 27, 29psrbagev2 19634 . . . 4 ((𝜑𝑏𝐷) → (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶)
31 evlslem1.m . . . . 5 · = (.r𝑆)
327, 31ringcl 18682 . . . 4 ((𝑆 ∈ Ring ∧ (𝐹‘(𝑌𝑏)) ∈ 𝐶 ∧ (𝑇 Σg (𝑏𝑓 𝐺)) ∈ 𝐶) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
334, 17, 30, 32syl3anc 1439 . . 3 ((𝜑𝑏𝐷) → ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))) ∈ 𝐶)
34 eqid 2724 . . 3 (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
3533, 34fmptd 6500 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶)
36 ovexd 6795 . . . . 5 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
3713, 36rabexd 4921 . . . 4 (𝜑𝐷 ∈ V)
38 mptexg 6600 . . . 4 (𝐷 ∈ V → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V)
3937, 38syl 17 . . 3 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V)
40 funmpt 6039 . . . 4 Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺))))
4140a1i 11 . . 3 (𝜑 → Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))))
42 fvexd 6316 . . 3 (𝜑 → (0g𝑆) ∈ V)
43 eqid 2724 . . . . 5 (0g𝑅) = (0g𝑅)
44 evlslem1.r . . . . 5 (𝜑𝑅 ∈ CRing)
4511, 12, 43, 14, 44mplelsfi 19614 . . . 4 (𝜑𝑌 finSupp (0g𝑅))
4645fsuppimpd 8398 . . 3 (𝜑 → (𝑌 supp (0g𝑅)) ∈ Fin)
4715feqmptd 6363 . . . . . . 7 (𝜑𝑌 = (𝑏𝐷 ↦ (𝑌𝑏)))
4847oveq1d 6780 . . . . . 6 (𝜑 → (𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)))
49 eqimss2 3764 . . . . . 6 ((𝑌 supp (0g𝑅)) = ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
5048, 49syl 17 . . . . 5 (𝜑 → ((𝑏𝐷 ↦ (𝑌𝑏)) supp (0g𝑅)) ⊆ (𝑌 supp (0g𝑅)))
51 rhmghm 18848 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
52 eqid 2724 . . . . . . 7 (0g𝑆) = (0g𝑆)
5343, 52ghmid 17788 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘(0g𝑅)) = (0g𝑆))
545, 51, 533syl 18 . . . . 5 (𝜑 → (𝐹‘(0g𝑅)) = (0g𝑆))
55 fvexd 6316 . . . . 5 ((𝜑𝑏𝐷) → (𝑌𝑏) ∈ V)
56 fvexd 6316 . . . . 5 (𝜑 → (0g𝑅) ∈ V)
5750, 54, 55, 56suppssfv 7451 . . . 4 (𝜑 → ((𝑏𝐷 ↦ (𝐹‘(𝑌𝑏))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
587, 31, 52ringlz 18708 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
593, 58sylan 489 . . . 4 ((𝜑𝑥𝐶) → ((0g𝑆) · 𝑥) = (0g𝑆))
60 fvexd 6316 . . . 4 ((𝜑𝑏𝐷) → (𝐹‘(𝑌𝑏)) ∈ V)
6157, 59, 60, 30, 42suppssov1 7447 . . 3 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))
62 suppssfifsupp 8406 . . 3 ((((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∈ V ∧ Fun (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) ∧ (0g𝑆) ∈ V) ∧ ((𝑌 supp (0g𝑅)) ∈ Fin ∧ ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) supp (0g𝑆)) ⊆ (𝑌 supp (0g𝑅)))) → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
6339, 41, 42, 46, 61, 62syl32anc 1447 . 2 (𝜑 → (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆))
6435, 63jca 555 1 (𝜑 → ((𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))):𝐷𝐶 ∧ (𝑏𝐷 ↦ ((𝐹‘(𝑌𝑏)) · (𝑇 Σg (𝑏𝑓 𝐺)))) finSupp (0g𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  {crab 3018  Vcvv 3304  wss 3680   class class class wbr 4760  cmpt 4837  ccnv 5217  cima 5221  Fun wfun 5995  wf 5997  cfv 6001  (class class class)co 6765  𝑓 cof 7012   supp csupp 7415  𝑚 cmap 7974  Fincfn 8072   finSupp cfsupp 8391  cn 11133  0cn0 11405  Basecbs 15980  .rcmulr 16065  0gc0g 16223   Σg cgsu 16224  .gcmg 17662   GrpHom cghm 17779  CMndccmn 18314  mulGrpcmgp 18610  Ringcrg 18668  CRingccrg 18669   RingHom crh 18835   mVar cmvr 19475   mPoly cmpl 19476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-supp 7416  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fsupp 8392  df-oi 8531  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-seq 12917  df-hash 13233  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-sca 16080  df-vsca 16081  df-tset 16083  df-0g 16225  df-gsum 16226  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-mhm 17457  df-grp 17547  df-minusg 17548  df-mulg 17663  df-ghm 17780  df-cntz 17871  df-cmn 18316  df-mgp 18611  df-ur 18623  df-ring 18670  df-cring 18671  df-rnghom 18838  df-psr 19479  df-mpl 19481
This theorem is referenced by:  evlslem1  19638
  Copyright terms: Public domain W3C validator