MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1rhm Structured version   Visualization version   GIF version

Theorem evls1rhm 19735
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evls1rhm.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1rhm.b 𝐵 = (Base‘𝑆)
evls1rhm.t 𝑇 = (𝑆s 𝐵)
evls1rhm.u 𝑈 = (𝑆s 𝑅)
evls1rhm.w 𝑊 = (Poly1𝑈)
Assertion
Ref Expression
evls1rhm ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))

Proof of Theorem evls1rhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evls1rhm.b . . . . . 6 𝐵 = (Base‘𝑆)
21subrgss 18829 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
32adantl 481 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
4 elpwg 4199 . . . . 5 (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
54adantl 481 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵𝑅𝐵))
63, 5mpbird 247 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵)
7 evls1rhm.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
8 eqid 2651 . . . 4 (1𝑜 evalSub 𝑆) = (1𝑜 evalSub 𝑆)
97, 8, 1evls1fval 19732 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)))
106, 9syldan 486 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)))
11 evls1rhm.t . . . . 5 𝑇 = (𝑆s 𝐵)
12 eqid 2651 . . . . 5 (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦}))))
131, 11, 12evls1rhmlem 19734 . . . 4 (𝑆 ∈ CRing → (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆s (𝐵𝑚 1𝑜)) RingHom 𝑇))
1413adantr 480 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆s (𝐵𝑚 1𝑜)) RingHom 𝑇))
15 1on 7612 . . . . 5 1𝑜 ∈ On
16 eqid 2651 . . . . . 6 ((1𝑜 evalSub 𝑆)‘𝑅) = ((1𝑜 evalSub 𝑆)‘𝑅)
17 eqid 2651 . . . . . 6 (1𝑜 mPoly 𝑈) = (1𝑜 mPoly 𝑈)
18 evls1rhm.u . . . . . 6 𝑈 = (𝑆s 𝑅)
19 eqid 2651 . . . . . 6 (𝑆s (𝐵𝑚 1𝑜)) = (𝑆s (𝐵𝑚 1𝑜))
2016, 17, 18, 19, 1evlsrhm 19569 . . . . 5 ((1𝑜 ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆s (𝐵𝑚 1𝑜))))
2115, 20mp3an1 1451 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆s (𝐵𝑚 1𝑜))))
22 eqidd 2652 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊))
23 eqidd 2652 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆s (𝐵𝑚 1𝑜))) = (Base‘(𝑆s (𝐵𝑚 1𝑜))))
24 evls1rhm.w . . . . . . 7 𝑊 = (Poly1𝑈)
25 eqid 2651 . . . . . . 7 (PwSer1𝑈) = (PwSer1𝑈)
26 eqid 2651 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2724, 25, 26ply1bas 19613 . . . . . 6 (Base‘𝑊) = (Base‘(1𝑜 mPoly 𝑈))
2827a1i 11 . . . . 5 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1𝑜 mPoly 𝑈)))
29 eqid 2651 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3024, 17, 29ply1plusg 19643 . . . . . . 7 (+g𝑊) = (+g‘(1𝑜 mPoly 𝑈))
3130a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g𝑊) = (+g‘(1𝑜 mPoly 𝑈)))
3231oveqdr 6714 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g‘(1𝑜 mPoly 𝑈))𝑦))
33 eqidd 2652 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵𝑚 1𝑜))))) → (𝑥(+g‘(𝑆s (𝐵𝑚 1𝑜)))𝑦) = (𝑥(+g‘(𝑆s (𝐵𝑚 1𝑜)))𝑦))
34 eqid 2651 . . . . . . . 8 (.r𝑊) = (.r𝑊)
3524, 17, 34ply1mulr 19645 . . . . . . 7 (.r𝑊) = (.r‘(1𝑜 mPoly 𝑈))
3635a1i 11 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r𝑊) = (.r‘(1𝑜 mPoly 𝑈)))
3736oveqdr 6714 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)𝑦) = (𝑥(.r‘(1𝑜 mPoly 𝑈))𝑦))
38 eqidd 2652 . . . . 5 (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆s (𝐵𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑆s (𝐵𝑚 1𝑜))))) → (𝑥(.r‘(𝑆s (𝐵𝑚 1𝑜)))𝑦) = (𝑥(.r‘(𝑆s (𝐵𝑚 1𝑜)))𝑦))
3922, 23, 28, 23, 32, 33, 37, 38rhmpropd 18863 . . . 4 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆s (𝐵𝑚 1𝑜))) = ((1𝑜 mPoly 𝑈) RingHom (𝑆s (𝐵𝑚 1𝑜))))
4021, 39eleqtrrd 2733 . . 3 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵𝑚 1𝑜))))
41 rhmco 18785 . . 3 (((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆s (𝐵𝑚 1𝑜)) RingHom 𝑇) ∧ ((1𝑜 evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆s (𝐵𝑚 1𝑜)))) → ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4214, 40, 41syl2anc 694 . 2 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵𝑚 (𝐵𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇))
4310, 42eqeltrd 2730 1 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wss 3607  𝒫 cpw 4191  {csn 4210  cmpt 4762   × cxp 5141  ccom 5147  Oncon0 5761  cfv 5926  (class class class)co 6690  1𝑜c1o 7598  𝑚 cmap 7899  Basecbs 15904  s cress 15905  +gcplusg 15988  .rcmulr 15989  s cpws 16154  CRingccrg 18594   RingHom crh 18760  SubRingcsubrg 18824   mPoly cmpl 19401   evalSub ces 19552  PwSer1cps1 19593  Poly1cpl1 19595   evalSub1 ces1 19726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-cring 18596  df-rnghom 18763  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-assa 19360  df-asp 19361  df-ascl 19362  df-psr 19404  df-mvr 19405  df-mpl 19406  df-opsr 19408  df-evls 19554  df-psr1 19598  df-ply1 19600  df-evls1 19728
This theorem is referenced by:  evls1gsumadd  19737  evls1gsummul  19738  evls1varpw  19739
  Copyright terms: Public domain W3C validator