![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1rhm | Structured version Visualization version GIF version |
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evls1rhm.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
evls1rhm.t | ⊢ 𝑇 = (𝑆 ↑s 𝐵) |
evls1rhm.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1rhm.w | ⊢ 𝑊 = (Poly1‘𝑈) |
Ref | Expression |
---|---|
evls1rhm | ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1rhm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
2 | 1 | subrgss 18829 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
4 | elpwg 4199 | . . . . 5 ⊢ (𝑅 ∈ (SubRing‘𝑆) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑅 ∈ 𝒫 𝐵 ↔ 𝑅 ⊆ 𝐵)) |
6 | 3, 5 | mpbird 247 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ 𝒫 𝐵) |
7 | evls1rhm.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
8 | eqid 2651 | . . . 4 ⊢ (1𝑜 evalSub 𝑆) = (1𝑜 evalSub 𝑆) | |
9 | 7, 8, 1 | evls1fval 19732 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ 𝒫 𝐵) → 𝑄 = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅))) |
10 | 6, 9 | syldan 486 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅))) |
11 | evls1rhm.t | . . . . 5 ⊢ 𝑇 = (𝑆 ↑s 𝐵) | |
12 | eqid 2651 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) = (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) | |
13 | 1, 11, 12 | evls1rhmlem 19734 | . . . 4 ⊢ (𝑆 ∈ CRing → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
14 | 13 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇)) |
15 | 1on 7612 | . . . . 5 ⊢ 1𝑜 ∈ On | |
16 | eqid 2651 | . . . . . 6 ⊢ ((1𝑜 evalSub 𝑆)‘𝑅) = ((1𝑜 evalSub 𝑆)‘𝑅) | |
17 | eqid 2651 | . . . . . 6 ⊢ (1𝑜 mPoly 𝑈) = (1𝑜 mPoly 𝑈) | |
18 | evls1rhm.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
19 | eqid 2651 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) = (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) | |
20 | 16, 17, 18, 19, 1 | evlsrhm 19569 | . . . . 5 ⊢ ((1𝑜 ∈ On ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
21 | 15, 20 | mp3an1 1451 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
22 | eqidd 2652 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘𝑊)) | |
23 | eqidd 2652 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) = (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) | |
24 | evls1rhm.w | . . . . . . 7 ⊢ 𝑊 = (Poly1‘𝑈) | |
25 | eqid 2651 | . . . . . . 7 ⊢ (PwSer1‘𝑈) = (PwSer1‘𝑈) | |
26 | eqid 2651 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
27 | 24, 25, 26 | ply1bas 19613 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘(1𝑜 mPoly 𝑈)) |
28 | 27 | a1i 11 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (Base‘𝑊) = (Base‘(1𝑜 mPoly 𝑈))) |
29 | eqid 2651 | . . . . . . . 8 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
30 | 24, 17, 29 | ply1plusg 19643 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘(1𝑜 mPoly 𝑈)) |
31 | 30 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (+g‘𝑊) = (+g‘(1𝑜 mPoly 𝑈))) |
32 | 31 | oveqdr 6714 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘(1𝑜 mPoly 𝑈))𝑦)) |
33 | eqidd 2652 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))))) → (𝑥(+g‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦) = (𝑥(+g‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦)) | |
34 | eqid 2651 | . . . . . . . 8 ⊢ (.r‘𝑊) = (.r‘𝑊) | |
35 | 24, 17, 34 | ply1mulr 19645 | . . . . . . 7 ⊢ (.r‘𝑊) = (.r‘(1𝑜 mPoly 𝑈)) |
36 | 35 | a1i 11 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (.r‘𝑊) = (.r‘(1𝑜 mPoly 𝑈))) |
37 | 36 | oveqdr 6714 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)𝑦) = (𝑥(.r‘(1𝑜 mPoly 𝑈))𝑦)) |
38 | eqidd 2652 | . . . . 5 ⊢ (((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ (𝑥 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) ∧ 𝑦 ∈ (Base‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜))))) → (𝑥(.r‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦) = (𝑥(.r‘(𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))𝑦)) | |
39 | 22, 23, 28, 23, 32, 33, 37, 38 | rhmpropd 18863 | . . . 4 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑊 RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜))) = ((1𝑜 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
40 | 21, 39 | eleqtrrd 2733 | . . 3 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((1𝑜 evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) |
41 | rhmco 18785 | . . 3 ⊢ (((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∈ ((𝑆 ↑s (𝐵 ↑𝑚 1𝑜)) RingHom 𝑇) ∧ ((1𝑜 evalSub 𝑆)‘𝑅) ∈ (𝑊 RingHom (𝑆 ↑s (𝐵 ↑𝑚 1𝑜)))) → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) | |
42 | 14, 40, 41 | syl2anc 694 | . 2 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ (𝐵 ↑𝑚 (𝐵 ↑𝑚 1𝑜)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) ∘ ((1𝑜 evalSub 𝑆)‘𝑅)) ∈ (𝑊 RingHom 𝑇)) |
43 | 10, 42 | eqeltrd 2730 | 1 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 𝒫 cpw 4191 {csn 4210 ↦ cmpt 4762 × cxp 5141 ∘ ccom 5147 Oncon0 5761 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 ↑𝑚 cmap 7899 Basecbs 15904 ↾s cress 15905 +gcplusg 15988 .rcmulr 15989 ↑s cpws 16154 CRingccrg 18594 RingHom crh 18760 SubRingcsubrg 18824 mPoly cmpl 19401 evalSub ces 19552 PwSer1cps1 19593 Poly1cpl1 19595 evalSub1 ces1 19726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-srg 18552 df-ring 18595 df-cring 18596 df-rnghom 18763 df-subrg 18826 df-lmod 18913 df-lss 18981 df-lsp 19020 df-assa 19360 df-asp 19361 df-ascl 19362 df-psr 19404 df-mvr 19405 df-mpl 19406 df-opsr 19408 df-evls 19554 df-psr1 19598 df-ply1 19600 df-evls1 19728 |
This theorem is referenced by: evls1gsumadd 19737 evls1gsummul 19738 evls1varpw 19739 |
Copyright terms: Public domain | W3C validator |