MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf2 Structured version   Visualization version   GIF version

Theorem evlf2 17059
Description: Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlfval.e 𝐸 = (𝐶 evalF 𝐷)
evlfval.c (𝜑𝐶 ∈ Cat)
evlfval.d (𝜑𝐷 ∈ Cat)
evlfval.b 𝐵 = (Base‘𝐶)
evlfval.h 𝐻 = (Hom ‘𝐶)
evlfval.o · = (comp‘𝐷)
evlfval.n 𝑁 = (𝐶 Nat 𝐷)
evlf2.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf2.g (𝜑𝐺 ∈ (𝐶 Func 𝐷))
evlf2.x (𝜑𝑋𝐵)
evlf2.y (𝜑𝑌𝐵)
evlf2.l 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
Assertion
Ref Expression
evlf2 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Distinct variable groups:   𝑔,𝑎,𝐶   𝐷,𝑎,𝑔   𝑔,𝐻   𝐹,𝑎,𝑔   𝑁,𝑎,𝑔   𝐺,𝑎,𝑔   𝜑,𝑎,𝑔   · ,𝑎,𝑔   𝑋,𝑎,𝑔   𝑌,𝑎,𝑔
Allowed substitution hints:   𝐵(𝑔,𝑎)   𝐸(𝑔,𝑎)   𝐻(𝑎)   𝐿(𝑔,𝑎)

Proof of Theorem evlf2
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf2.l . 2 𝐿 = (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩)
2 evlfval.e . . . . 5 𝐸 = (𝐶 evalF 𝐷)
3 evlfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 evlfval.d . . . . 5 (𝜑𝐷 ∈ Cat)
5 evlfval.b . . . . 5 𝐵 = (Base‘𝐶)
6 evlfval.h . . . . 5 𝐻 = (Hom ‘𝐶)
7 evlfval.o . . . . 5 · = (comp‘𝐷)
8 evlfval.n . . . . 5 𝑁 = (𝐶 Nat 𝐷)
92, 3, 4, 5, 6, 7, 8evlfval 17058 . . . 4 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
10 ovex 6841 . . . . . 6 (𝐶 Func 𝐷) ∈ V
11 fvex 6362 . . . . . . 7 (Base‘𝐶) ∈ V
125, 11eqeltri 2835 . . . . . 6 𝐵 ∈ V
1310, 12mpt2ex 7415 . . . . 5 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
1410, 12xpex 7127 . . . . . 6 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1514, 14mpt2ex 7415 . . . . 5 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1613, 15op2ndd 7344 . . . 4 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
179, 16syl 17 . . 3 (𝜑 → (2nd𝐸) = (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))))
18 fvexd 6364 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) ∈ V)
19 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → 𝑥 = ⟨𝐹, 𝑋⟩)
2019fveq2d 6356 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = (1st ‘⟨𝐹, 𝑋⟩))
21 evlf2.f . . . . . . 7 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
22 evlf2.x . . . . . . 7 (𝜑𝑋𝐵)
23 op1stg 7345 . . . . . . 7 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2421, 22, 23syl2anc 696 . . . . . 6 (𝜑 → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2524adantr 472 . . . . 5 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st ‘⟨𝐹, 𝑋⟩) = 𝐹)
2620, 25eqtrd 2794 . . . 4 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) = 𝐹)
27 fvexd 6364 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) ∈ V)
28 simplrr 820 . . . . . . 7 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → 𝑦 = ⟨𝐺, 𝑌⟩)
2928fveq2d 6356 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = (1st ‘⟨𝐺, 𝑌⟩))
30 evlf2.g . . . . . . . 8 (𝜑𝐺 ∈ (𝐶 Func 𝐷))
31 evlf2.y . . . . . . . 8 (𝜑𝑌𝐵)
32 op1stg 7345 . . . . . . . 8 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3330, 31, 32syl2anc 696 . . . . . . 7 (𝜑 → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3433ad2antrr 764 . . . . . 6 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st ‘⟨𝐺, 𝑌⟩) = 𝐺)
3529, 34eqtrd 2794 . . . . 5 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) = 𝐺)
36 simplr 809 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑚 = 𝐹)
37 simpr 479 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑛 = 𝐺)
3836, 37oveq12d 6831 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑚𝑁𝑛) = (𝐹𝑁𝐺))
3919ad2antrr 764 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑥 = ⟨𝐹, 𝑋⟩)
4039fveq2d 6356 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = (2nd ‘⟨𝐹, 𝑋⟩))
41 op2ndg 7346 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4221, 22, 41syl2anc 696 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4342ad3antrrr 768 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐹, 𝑋⟩) = 𝑋)
4440, 43eqtrd 2794 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑥) = 𝑋)
4528adantr 472 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → 𝑦 = ⟨𝐺, 𝑌⟩)
4645fveq2d 6356 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = (2nd ‘⟨𝐺, 𝑌⟩))
47 op2ndg 7346 . . . . . . . . . 10 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4830, 31, 47syl2anc 696 . . . . . . . . 9 (𝜑 → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
4948ad3antrrr 768 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd ‘⟨𝐺, 𝑌⟩) = 𝑌)
5046, 49eqtrd 2794 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑦) = 𝑌)
5144, 50oveq12d 6831 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)𝐻(2nd𝑦)) = (𝑋𝐻𝑌))
5236fveq2d 6356 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑚) = (1st𝐹))
5352, 44fveq12d 6358 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑥)) = ((1st𝐹)‘𝑋))
5452, 50fveq12d 6358 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑚)‘(2nd𝑦)) = ((1st𝐹)‘𝑌))
5553, 54opeq12d 4561 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ = ⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩)
5637fveq2d 6356 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (1st𝑛) = (1st𝐺))
5756, 50fveq12d 6358 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((1st𝑛)‘(2nd𝑦)) = ((1st𝐺)‘𝑌))
5855, 57oveq12d 6831 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦))) = (⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌)))
5950fveq2d 6356 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎‘(2nd𝑦)) = (𝑎𝑌))
6036fveq2d 6356 . . . . . . . . 9 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (2nd𝑚) = (2nd𝐹))
6160, 44, 50oveq123d 6834 . . . . . . . 8 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((2nd𝑥)(2nd𝑚)(2nd𝑦)) = (𝑋(2nd𝐹)𝑌))
6261fveq1d 6354 . . . . . . 7 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔) = ((𝑋(2nd𝐹)𝑌)‘𝑔))
6358, 59, 62oveq123d 6834 . . . . . 6 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)) = ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔)))
6438, 51, 63mpt2eq123dv 6882 . . . . 5 ((((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) ∧ 𝑛 = 𝐺) → (𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6527, 35, 64csbied2 3702 . . . 4 (((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) ∧ 𝑚 = 𝐹) → (1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
6618, 26, 65csbied2 3702 . . 3 ((𝜑 ∧ (𝑥 = ⟨𝐹, 𝑋⟩ ∧ 𝑦 = ⟨𝐺, 𝑌⟩)) → (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd𝑥)𝐻(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩ · ((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
67 opelxpi 5305 . . . 4 ((𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋𝐵) → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
6821, 22, 67syl2anc 696 . . 3 (𝜑 → ⟨𝐹, 𝑋⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
69 opelxpi 5305 . . . 4 ((𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌𝐵) → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
7030, 31, 69syl2anc 696 . . 3 (𝜑 → ⟨𝐺, 𝑌⟩ ∈ ((𝐶 Func 𝐷) × 𝐵))
71 ovex 6841 . . . . 5 (𝐹𝑁𝐺) ∈ V
72 ovex 6841 . . . . 5 (𝑋𝐻𝑌) ∈ V
7371, 72mpt2ex 7415 . . . 4 (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V
7473a1i 11 . . 3 (𝜑 → (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))) ∈ V)
7517, 66, 68, 70, 74ovmpt2d 6953 . 2 (𝜑 → (⟨𝐹, 𝑋⟩(2nd𝐸)⟨𝐺, 𝑌⟩) = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
761, 75syl5eq 2806 1 (𝜑𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎𝑌)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑌)⟩ · ((1st𝐺)‘𝑌))((𝑋(2nd𝐹)𝑌)‘𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  csb 3674  cop 4327   × cxp 5264  cfv 6049  (class class class)co 6813  cmpt2 6815  1st c1st 7331  2nd c2nd 7332  Basecbs 16059  Hom chom 16154  compcco 16155  Catccat 16526   Func cfunc 16715   Nat cnat 16802   evalF cevlf 17050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-evlf 17054
This theorem is referenced by:  evlf2val  17060  evlfcl  17063
  Copyright terms: Public domain W3C validator