MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlf1 Structured version   Visualization version   GIF version

Theorem evlf1 17081
Description: Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
evlf1.e 𝐸 = (𝐶 evalF 𝐷)
evlf1.c (𝜑𝐶 ∈ Cat)
evlf1.d (𝜑𝐷 ∈ Cat)
evlf1.b 𝐵 = (Base‘𝐶)
evlf1.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
evlf1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
evlf1 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))

Proof of Theorem evlf1
Dummy variables 𝑥 𝑦 𝑓 𝑎 𝑔 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlf1.e . . . 4 𝐸 = (𝐶 evalF 𝐷)
2 evlf1.c . . . 4 (𝜑𝐶 ∈ Cat)
3 evlf1.d . . . 4 (𝜑𝐷 ∈ Cat)
4 evlf1.b . . . 4 𝐵 = (Base‘𝐶)
5 eqid 2760 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
6 eqid 2760 . . . 4 (comp‘𝐷) = (comp‘𝐷)
7 eqid 2760 . . . 4 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
81, 2, 3, 4, 5, 6, 7evlfval 17078 . . 3 (𝜑𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
9 ovex 6842 . . . . 5 (𝐶 Func 𝐷) ∈ V
10 fvex 6363 . . . . . 6 (Base‘𝐶) ∈ V
114, 10eqeltri 2835 . . . . 5 𝐵 ∈ V
129, 11mpt2ex 7416 . . . 4 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)) ∈ V
139, 11xpex 7128 . . . . 5 ((𝐶 Func 𝐷) × 𝐵) ∈ V
1413, 13mpt2ex 7416 . . . 4 (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔)))) ∈ V
1512, 14op1std 7344 . . 3 (𝐸 = ⟨(𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝐶 Nat 𝐷)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝐶)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝐷)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩ → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)))
168, 15syl 17 . 2 (𝜑 → (1st𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥𝐵 ↦ ((1st𝑓)‘𝑥)))
17 simprl 811 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
1817fveq2d 6357 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (1st𝑓) = (1st𝐹))
19 simprr 813 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
2018, 19fveq12d 6359 . 2 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑋))
21 evlf1.f . 2 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
22 evlf1.x . 2 (𝜑𝑋𝐵)
23 fvexd 6365 . 2 (𝜑 → ((1st𝐹)‘𝑋) ∈ V)
2416, 20, 21, 22, 23ovmpt2d 6954 1 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  csb 3674  cop 4327   × cxp 5264  cfv 6049  (class class class)co 6814  cmpt2 6816  1st c1st 7332  2nd c2nd 7333  Basecbs 16079  Hom chom 16174  compcco 16175  Catccat 16546   Func cfunc 16735   Nat cnat 16822   evalF cevlf 17070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-evlf 17074
This theorem is referenced by:  evlfcllem  17082  evlfcl  17083  uncf1  17097  yonedalem3a  17135  yonedalem3b  17140  yonedainv  17142  yonffthlem  17143
  Copyright terms: Public domain W3C validator