![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1sca | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps scalars to constant functions. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evl1sca.o | ⊢ 𝑂 = (eval1‘𝑅) |
evl1sca.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1sca.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1sca.a | ⊢ 𝐴 = (algSc‘𝑃) |
Ref | Expression |
---|---|
evl1sca | ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 18604 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) |
3 | evl1sca.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | evl1sca.a | . . . . . 6 ⊢ 𝐴 = (algSc‘𝑃) | |
5 | evl1sca.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | 3, 4, 5, 6 | ply1sclf 19703 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐴:𝐵⟶(Base‘𝑃)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴:𝐵⟶(Base‘𝑃)) |
9 | ffvelrn 6397 | . . . 4 ⊢ ((𝐴:𝐵⟶(Base‘𝑃) ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) | |
10 | 8, 9 | sylancom 702 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) ∈ (Base‘𝑃)) |
11 | evl1sca.o | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
12 | eqid 2651 | . . . 4 ⊢ (1𝑜 eval 𝑅) = (1𝑜 eval 𝑅) | |
13 | eqid 2651 | . . . 4 ⊢ (1𝑜 mPoly 𝑅) = (1𝑜 mPoly 𝑅) | |
14 | eqid 2651 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
15 | 3, 14, 6 | ply1bas 19613 | . . . 4 ⊢ (Base‘𝑃) = (Base‘(1𝑜 mPoly 𝑅)) |
16 | 11, 12, 5, 13, 15 | evl1val 19741 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ (𝐴‘𝑋) ∈ (Base‘𝑃)) → (𝑂‘(𝐴‘𝑋)) = (((1𝑜 eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) |
17 | 10, 16 | syldan 486 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (((1𝑜 eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) |
18 | 5 | ressid 15982 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
19 | 18 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ↾s 𝐵) = 𝑅) |
20 | 19 | oveq2d 6706 | . . . . . . . 8 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (1𝑜 mPoly (𝑅 ↾s 𝐵)) = (1𝑜 mPoly 𝑅)) |
21 | 20 | fveq2d 6233 | . . . . . . 7 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (algSc‘(1𝑜 mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1𝑜 mPoly 𝑅))) |
22 | 3, 4 | ply1ascl 19676 | . . . . . . 7 ⊢ 𝐴 = (algSc‘(1𝑜 mPoly 𝑅)) |
23 | 21, 22 | syl6reqr 2704 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐴 = (algSc‘(1𝑜 mPoly (𝑅 ↾s 𝐵)))) |
24 | 23 | fveq1d 6231 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝐴‘𝑋) = ((algSc‘(1𝑜 mPoly (𝑅 ↾s 𝐵)))‘𝑋)) |
25 | 24 | fveq2d 6233 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1𝑜 eval 𝑅)‘(𝐴‘𝑋)) = ((1𝑜 eval 𝑅)‘((algSc‘(1𝑜 mPoly (𝑅 ↾s 𝐵)))‘𝑋))) |
26 | 12, 5 | evlval 19572 | . . . . 5 ⊢ (1𝑜 eval 𝑅) = ((1𝑜 evalSub 𝑅)‘𝐵) |
27 | eqid 2651 | . . . . 5 ⊢ (1𝑜 mPoly (𝑅 ↾s 𝐵)) = (1𝑜 mPoly (𝑅 ↾s 𝐵)) | |
28 | eqid 2651 | . . . . 5 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
29 | eqid 2651 | . . . . 5 ⊢ (algSc‘(1𝑜 mPoly (𝑅 ↾s 𝐵))) = (algSc‘(1𝑜 mPoly (𝑅 ↾s 𝐵))) | |
30 | 1on 7612 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
31 | 30 | a1i 11 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 1𝑜 ∈ On) |
32 | simpl 472 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ CRing) | |
33 | 5 | subrgid 18830 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
34 | 2, 33 | syl 17 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ (SubRing‘𝑅)) |
35 | simpr 476 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
36 | 26, 27, 28, 5, 29, 31, 32, 34, 35 | evlssca 19570 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1𝑜 eval 𝑅)‘((algSc‘(1𝑜 mPoly (𝑅 ↾s 𝐵)))‘𝑋)) = ((𝐵 ↑𝑚 1𝑜) × {𝑋})) |
37 | 25, 36 | eqtrd 2685 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((1𝑜 eval 𝑅)‘(𝐴‘𝑋)) = ((𝐵 ↑𝑚 1𝑜) × {𝑋})) |
38 | 37 | coeq1d 5316 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((1𝑜 eval 𝑅)‘(𝐴‘𝑋)) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) = (((𝐵 ↑𝑚 1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})))) |
39 | df1o2 7617 | . . . . . . 7 ⊢ 1𝑜 = {∅} | |
40 | fvex 6239 | . . . . . . . 8 ⊢ (Base‘𝑅) ∈ V | |
41 | 5, 40 | eqeltri 2726 | . . . . . . 7 ⊢ 𝐵 ∈ V |
42 | 0ex 4823 | . . . . . . 7 ⊢ ∅ ∈ V | |
43 | eqid 2651 | . . . . . . 7 ⊢ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})) | |
44 | 39, 41, 42, 43 | mapsnf1o3 7948 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵–1-1-onto→(𝐵 ↑𝑚 1𝑜) |
45 | f1of 6175 | . . . . . 6 ⊢ ((𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵–1-1-onto→(𝐵 ↑𝑚 1𝑜) → (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵⟶(𝐵 ↑𝑚 1𝑜)) | |
46 | 44, 45 | mp1i 13 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵⟶(𝐵 ↑𝑚 1𝑜)) |
47 | 43 | fmpt 6421 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐵 (1𝑜 × {𝑦}) ∈ (𝐵 ↑𝑚 1𝑜) ↔ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})):𝐵⟶(𝐵 ↑𝑚 1𝑜)) |
48 | 46, 47 | sylibr 224 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ∀𝑦 ∈ 𝐵 (1𝑜 × {𝑦}) ∈ (𝐵 ↑𝑚 1𝑜)) |
49 | eqidd 2652 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦})) = (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) | |
50 | fconstmpt 5197 | . . . . 5 ⊢ ((𝐵 ↑𝑚 1𝑜) × {𝑋}) = (𝑥 ∈ (𝐵 ↑𝑚 1𝑜) ↦ 𝑋) | |
51 | 50 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → ((𝐵 ↑𝑚 1𝑜) × {𝑋}) = (𝑥 ∈ (𝐵 ↑𝑚 1𝑜) ↦ 𝑋)) |
52 | eqidd 2652 | . . . 4 ⊢ (𝑥 = (1𝑜 × {𝑦}) → 𝑋 = 𝑋) | |
53 | 48, 49, 51, 52 | fmptcof 6437 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑𝑚 1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) = (𝑦 ∈ 𝐵 ↦ 𝑋)) |
54 | fconstmpt 5197 | . . 3 ⊢ (𝐵 × {𝑋}) = (𝑦 ∈ 𝐵 ↦ 𝑋) | |
55 | 53, 54 | syl6eqr 2703 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (((𝐵 ↑𝑚 1𝑜) × {𝑋}) ∘ (𝑦 ∈ 𝐵 ↦ (1𝑜 × {𝑦}))) = (𝐵 × {𝑋})) |
56 | 17, 38, 55 | 3eqtrd 2689 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵) → (𝑂‘(𝐴‘𝑋)) = (𝐵 × {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ∅c0 3948 {csn 4210 ↦ cmpt 4762 × cxp 5141 ∘ ccom 5147 Oncon0 5761 ⟶wf 5922 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 ↑𝑚 cmap 7899 Basecbs 15904 ↾s cress 15905 Ringcrg 18593 CRingccrg 18594 SubRingcsubrg 18824 algSccascl 19359 mPoly cmpl 19401 eval cevl 19553 PwSer1cps1 19593 Poly1cpl1 19595 eval1ce1 19727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-sup 8389 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-hom 16013 df-cco 16014 df-0g 16149 df-gsum 16150 df-prds 16155 df-pws 16157 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-mulg 17588 df-subg 17638 df-ghm 17705 df-cntz 17796 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-srg 18552 df-ring 18595 df-cring 18596 df-rnghom 18763 df-subrg 18826 df-lmod 18913 df-lss 18981 df-lsp 19020 df-assa 19360 df-asp 19361 df-ascl 19362 df-psr 19404 df-mvr 19405 df-mpl 19406 df-opsr 19408 df-evls 19554 df-evl 19555 df-psr1 19598 df-ply1 19600 df-evl1 19729 |
This theorem is referenced by: evl1scad 19747 pf1const 19758 pf1ind 19767 evl1scvarpw 19775 ply1rem 23968 fta1g 23972 fta1blem 23973 plypf1 24013 |
Copyright terms: Public domain | W3C validator |