![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1gsummul | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 15-Sep-2019.) |
Ref | Expression |
---|---|
evl1gsumadd.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1gsumadd.k | ⊢ 𝐾 = (Base‘𝑅) |
evl1gsumadd.w | ⊢ 𝑊 = (Poly1‘𝑅) |
evl1gsumadd.p | ⊢ 𝑃 = (𝑅 ↑s 𝐾) |
evl1gsumadd.b | ⊢ 𝐵 = (Base‘𝑊) |
evl1gsumadd.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1gsumadd.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
evl1gsumadd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
evl1gsummul.1 | ⊢ 1 = (1r‘𝑊) |
evl1gsummul.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evl1gsummul.h | ⊢ 𝐻 = (mulGrp‘𝑃) |
evl1gsummul.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) |
Ref | Expression |
---|---|
evl1gsummul | ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1gsummul.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑊) | |
2 | evl1gsumadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | mgpbas 18715 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
4 | evl1gsummul.1 | . . . 4 ⊢ 1 = (1r‘𝑊) | |
5 | 1, 4 | ringidval 18723 | . . 3 ⊢ 1 = (0g‘𝐺) |
6 | evl1gsumadd.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
7 | evl1gsumadd.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑅) | |
8 | 7 | ply1crng 19790 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ CRing) |
9 | 1 | crngmgp 18775 | . . . 4 ⊢ (𝑊 ∈ CRing → 𝐺 ∈ CMnd) |
10 | 6, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
11 | crngring 18778 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | evl1gsumadd.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
14 | fvex 6363 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
15 | 13, 14 | eqeltri 2835 | . . . . 5 ⊢ 𝐾 ∈ V |
16 | 12, 15 | jctir 562 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐾 ∈ V)) |
17 | evl1gsumadd.p | . . . . 5 ⊢ 𝑃 = (𝑅 ↑s 𝐾) | |
18 | 17 | pwsring 18835 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ V) → 𝑃 ∈ Ring) |
19 | evl1gsummul.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑃) | |
20 | 19 | ringmgp 18773 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝐻 ∈ Mnd) |
21 | 16, 18, 20 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
22 | nn0ex 11510 | . . . . 5 ⊢ ℕ0 ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
24 | evl1gsumadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
25 | 23, 24 | ssexd 4957 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
26 | evl1gsumadd.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
27 | 26, 7, 17, 13 | evl1rhm 19918 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
28 | 1, 19 | rhmmhm 18944 | . . . 4 ⊢ (𝑄 ∈ (𝑊 RingHom 𝑃) → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
29 | 6, 27, 28 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
30 | evl1gsumadd.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
31 | evl1gsummul.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) | |
32 | 3, 5, 10, 21, 25, 29, 30, 31 | gsummptmhm 18560 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) = (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
33 | 32 | eqcomd 2766 | 1 ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 class class class wbr 4804 ↦ cmpt 4881 ‘cfv 6049 (class class class)co 6814 finSupp cfsupp 8442 ℕ0cn0 11504 Basecbs 16079 Σg cgsu 16323 ↑s cpws 16329 Mndcmnd 17515 MndHom cmhm 17554 CMndccmn 18413 mulGrpcmgp 18709 1rcur 18721 Ringcrg 18767 CRingccrg 18768 RingHom crh 18934 Poly1cpl1 19769 eval1ce1 19901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-ofr 7064 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-sup 8515 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-fzo 12680 df-seq 13016 df-hash 13332 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-hom 16188 df-cco 16189 df-0g 16324 df-gsum 16325 df-prds 16330 df-pws 16332 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-ghm 17879 df-cntz 17970 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-srg 18726 df-ring 18769 df-cring 18770 df-rnghom 18937 df-subrg 19000 df-lmod 19087 df-lss 19155 df-lsp 19194 df-assa 19534 df-asp 19535 df-ascl 19536 df-psr 19578 df-mvr 19579 df-mpl 19580 df-opsr 19582 df-evls 19728 df-evl 19729 df-psr1 19772 df-ply1 19774 df-evl1 19903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |