Step | Hyp | Ref
| Expression |
1 | | evl1addd.1 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
2 | | crngring 18758 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | evl1addd.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
5 | 4 | ply1ring 19820 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
6 | | eqid 2760 |
. . . . 5
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
7 | 6 | ringmgp 18753 |
. . . 4
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
8 | 3, 5, 7 | 3syl 18 |
. . 3
⊢ (𝜑 → (mulGrp‘𝑃) ∈ Mnd) |
9 | | evl1expd.4 |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
10 | | evl1addd.3 |
. . . 4
⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
11 | 10 | simpld 477 |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝑈) |
12 | | evl1addd.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
13 | 6, 12 | mgpbas 18695 |
. . . 4
⊢ 𝑈 =
(Base‘(mulGrp‘𝑃)) |
14 | | evl1expd.f |
. . . 4
⊢ ∙ =
(.g‘(mulGrp‘𝑃)) |
15 | 13, 14 | mulgnn0cl 17759 |
. . 3
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ 𝑁 ∈
ℕ0 ∧ 𝑀
∈ 𝑈) → (𝑁 ∙ 𝑀) ∈ 𝑈) |
16 | 8, 9, 11, 15 | syl3anc 1477 |
. 2
⊢ (𝜑 → (𝑁 ∙ 𝑀) ∈ 𝑈) |
17 | | evl1addd.q |
. . . . . . . . 9
⊢ 𝑂 = (eval1‘𝑅) |
18 | | eqid 2760 |
. . . . . . . . 9
⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) |
19 | | evl1addd.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
20 | 17, 4, 18, 19 | evl1rhm 19898 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
21 | 1, 20 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
22 | | eqid 2760 |
. . . . . . . 8
⊢
(mulGrp‘(𝑅
↑s 𝐵)) = (mulGrp‘(𝑅 ↑s 𝐵)) |
23 | 6, 22 | rhmmhm 18924 |
. . . . . . 7
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅 ↑s 𝐵)))) |
24 | 21, 23 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅 ↑s 𝐵)))) |
25 | | eqid 2760 |
. . . . . . 7
⊢
(.g‘(mulGrp‘(𝑅 ↑s 𝐵))) =
(.g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
26 | 13, 14, 25 | mhmmulg 17784 |
. . . . . 6
⊢ ((𝑂 ∈ ((mulGrp‘𝑃) MndHom (mulGrp‘(𝑅 ↑s 𝐵))) ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ 𝑈) → (𝑂‘(𝑁 ∙ 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑂‘𝑀))) |
27 | 24, 9, 11, 26 | syl3anc 1477 |
. . . . 5
⊢ (𝜑 → (𝑂‘(𝑁 ∙ 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑂‘𝑀))) |
28 | | eqid 2760 |
. . . . . . 7
⊢
(.g‘((mulGrp‘𝑅) ↑s 𝐵)) =
(.g‘((mulGrp‘𝑅) ↑s 𝐵)) |
29 | | eqidd 2761 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(mulGrp‘(𝑅 ↑s 𝐵))) = (Base‘(mulGrp‘(𝑅 ↑s 𝐵)))) |
30 | | fvex 6362 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
31 | 19, 30 | eqeltri 2835 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
32 | | eqid 2760 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
33 | | eqid 2760 |
. . . . . . . . . 10
⊢
((mulGrp‘𝑅)
↑s 𝐵) = ((mulGrp‘𝑅) ↑s 𝐵) |
34 | | eqid 2760 |
. . . . . . . . . 10
⊢
(Base‘(mulGrp‘(𝑅 ↑s 𝐵))) = (Base‘(mulGrp‘(𝑅 ↑s 𝐵))) |
35 | | eqid 2760 |
. . . . . . . . . 10
⊢
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵)) |
36 | | eqid 2760 |
. . . . . . . . . 10
⊢
(+g‘(mulGrp‘(𝑅 ↑s 𝐵))) =
(+g‘(mulGrp‘(𝑅 ↑s 𝐵))) |
37 | | eqid 2760 |
. . . . . . . . . 10
⊢
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)) |
38 | 18, 32, 33, 22, 34, 35, 36, 37 | pwsmgp 18818 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ 𝐵 ∈ V) →
((Base‘(mulGrp‘(𝑅 ↑s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ∧
(+g‘(mulGrp‘(𝑅 ↑s 𝐵))) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
39 | 1, 31, 38 | sylancl 697 |
. . . . . . . 8
⊢ (𝜑 →
((Base‘(mulGrp‘(𝑅 ↑s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ∧
(+g‘(mulGrp‘(𝑅 ↑s 𝐵))) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵)))) |
40 | 39 | simpld 477 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(mulGrp‘(𝑅 ↑s 𝐵))) = (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
41 | | ssv 3766 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘(𝑅 ↑s 𝐵))) ⊆ V |
42 | 41 | a1i 11 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(mulGrp‘(𝑅 ↑s 𝐵))) ⊆ V) |
43 | | ovexd 6843 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅 ↑s 𝐵)))𝑦) ∈ V) |
44 | 39 | simprd 482 |
. . . . . . . 8
⊢ (𝜑 →
(+g‘(mulGrp‘(𝑅 ↑s 𝐵))) =
(+g‘((mulGrp‘𝑅) ↑s 𝐵))) |
45 | 44 | oveqdr 6837 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g‘(mulGrp‘(𝑅 ↑s 𝐵)))𝑦) = (𝑥(+g‘((mulGrp‘𝑅) ↑s
𝐵))𝑦)) |
46 | 25, 28, 29, 40, 42, 43, 45 | mulgpropd 17785 |
. . . . . 6
⊢ (𝜑 →
(.g‘(mulGrp‘(𝑅 ↑s 𝐵))) =
(.g‘((mulGrp‘𝑅) ↑s 𝐵))) |
47 | 46 | oveqd 6830 |
. . . . 5
⊢ (𝜑 → (𝑁(.g‘(mulGrp‘(𝑅 ↑s 𝐵)))(𝑂‘𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s
𝐵))(𝑂‘𝑀))) |
48 | 27, 47 | eqtrd 2794 |
. . . 4
⊢ (𝜑 → (𝑂‘(𝑁 ∙ 𝑀)) = (𝑁(.g‘((mulGrp‘𝑅) ↑s
𝐵))(𝑂‘𝑀))) |
49 | 48 | fveq1d 6354 |
. . 3
⊢ (𝜑 → ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = ((𝑁(.g‘((mulGrp‘𝑅) ↑s
𝐵))(𝑂‘𝑀))‘𝑌)) |
50 | 32 | ringmgp 18753 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
51 | 3, 50 | syl 17 |
. . . . 5
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
52 | 31 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
53 | | eqid 2760 |
. . . . . . . . 9
⊢
(Base‘(𝑅
↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) |
54 | 12, 53 | rhmf 18928 |
. . . . . . . 8
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
55 | 21, 54 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
56 | 55, 11 | ffvelrnd 6523 |
. . . . . 6
⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
57 | 22, 53 | mgpbas 18695 |
. . . . . . 7
⊢
(Base‘(𝑅
↑s 𝐵)) = (Base‘(mulGrp‘(𝑅 ↑s 𝐵))) |
58 | 57, 40 | syl5eq 2806 |
. . . . . 6
⊢ (𝜑 → (Base‘(𝑅 ↑s 𝐵)) =
(Base‘((mulGrp‘𝑅) ↑s 𝐵))) |
59 | 56, 58 | eleqtrd 2841 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵))) |
60 | | evl1addd.2 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
61 | | evl1expd.e |
. . . . . 6
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
62 | 33, 35, 28, 61 | pwsmulg 17788 |
. . . . 5
⊢
((((mulGrp‘𝑅)
∈ Mnd ∧ 𝐵 ∈
V) ∧ (𝑁 ∈
ℕ0 ∧ (𝑂‘𝑀) ∈ (Base‘((mulGrp‘𝑅) ↑s
𝐵)) ∧ 𝑌 ∈ 𝐵)) → ((𝑁(.g‘((mulGrp‘𝑅) ↑s
𝐵))(𝑂‘𝑀))‘𝑌) = (𝑁 ↑ ((𝑂‘𝑀)‘𝑌))) |
63 | 51, 52, 9, 59, 60, 62 | syl23anc 1484 |
. . . 4
⊢ (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s
𝐵))(𝑂‘𝑀))‘𝑌) = (𝑁 ↑ ((𝑂‘𝑀)‘𝑌))) |
64 | 10 | simprd 482 |
. . . . 5
⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
65 | 64 | oveq2d 6829 |
. . . 4
⊢ (𝜑 → (𝑁 ↑ ((𝑂‘𝑀)‘𝑌)) = (𝑁 ↑ 𝑉)) |
66 | 63, 65 | eqtrd 2794 |
. . 3
⊢ (𝜑 → ((𝑁(.g‘((mulGrp‘𝑅) ↑s
𝐵))(𝑂‘𝑀))‘𝑌) = (𝑁 ↑ 𝑉)) |
67 | 49, 66 | eqtrd 2794 |
. 2
⊢ (𝜑 → ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 ↑ 𝑉)) |
68 | 16, 67 | jca 555 |
1
⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝑈 ∧ ((𝑂‘(𝑁 ∙ 𝑀))‘𝑌) = (𝑁 ↑ 𝑉))) |