Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpop3 Structured version   Visualization version   GIF version

Theorem evengpop3 42214
Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.)
Assertion
Ref Expression
evengpop3 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpop3
StepHypRef Expression
1 3odd 42145 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘9) → 3 ∈ Odd )
32anim1i 602 . . . . 5 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 453 . . . 4 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 42141 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 4790 . . . . 5 (𝑚 = (𝑁 − 3) → (5 < 𝑚 ↔ 5 < (𝑁 − 3)))
8 eleq1 2838 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOddW ↔ (𝑁 − 3) ∈ GoldbachOddW ))
97, 8imbi12d 333 . . . 4 (𝑚 = (𝑁 − 3) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
109adantl 467 . . 3 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((5 < 𝑚𝑚 ∈ GoldbachOddW ) ↔ (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
116, 10rspcdv 3463 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → (5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW )))
12 eluz2 11894 . . . . 5 (𝑁 ∈ (ℤ‘9) ↔ (9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁))
13 5p3e8 11368 . . . . . . . 8 (5 + 3) = 8
14 8p1e9 11360 . . . . . . . . 9 (8 + 1) = 9
15 9cn 11310 . . . . . . . . . 10 9 ∈ ℂ
16 ax-1cn 10196 . . . . . . . . . 10 1 ∈ ℂ
17 8cn 11308 . . . . . . . . . 10 8 ∈ ℂ
1815, 16, 17subadd2i 10571 . . . . . . . . 9 ((9 − 1) = 8 ↔ (8 + 1) = 9)
1914, 18mpbir 221 . . . . . . . 8 (9 − 1) = 8
2013, 19eqtr4i 2796 . . . . . . 7 (5 + 3) = (9 − 1)
21 zlem1lt 11631 . . . . . . . 8 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 ≤ 𝑁 ↔ (9 − 1) < 𝑁))
2221biimp3a 1580 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (9 − 1) < 𝑁)
2320, 22syl5eqbr 4821 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 + 3) < 𝑁)
24 5re 11301 . . . . . . . . . 10 5 ∈ ℝ
2524a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 5 ∈ ℝ)
26 3re 11296 . . . . . . . . . 10 3 ∈ ℝ
2726a1i 11 . . . . . . . . 9 (𝑁 ∈ ℤ → 3 ∈ ℝ)
28 zre 11583 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2925, 27, 283jca 1122 . . . . . . . 8 (𝑁 ∈ ℤ → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
30293ad2ant2 1128 . . . . . . 7 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → (5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ))
31 ltaddsub 10704 . . . . . . 7 ((5 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3230, 31syl 17 . . . . . 6 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → ((5 + 3) < 𝑁 ↔ 5 < (𝑁 − 3)))
3323, 32mpbid 222 . . . . 5 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 9 ≤ 𝑁) → 5 < (𝑁 − 3))
3412, 33sylbi 207 . . . 4 (𝑁 ∈ (ℤ‘9) → 5 < (𝑁 − 3))
3534adantr 466 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → 5 < (𝑁 − 3))
36 simpr 471 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 − 3) ∈ GoldbachOddW )
37 oveq1 6800 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
3837eqeq2d 2781 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
3938adantl 467 . . . . 5 ((((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
40 eluzelcn 11900 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 𝑁 ∈ ℂ)
41 3cn 11297 . . . . . . . . . 10 3 ∈ ℂ
4241a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 3 ∈ ℂ)
4340, 42jca 501 . . . . . . . 8 (𝑁 ∈ (ℤ‘9) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4443adantr 466 . . . . . . 7 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4544adantr 466 . . . . . 6 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
46 npcan 10492 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4746eqcomd 2777 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
4845, 47syl 17 . . . . 5 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → 𝑁 = ((𝑁 − 3) + 3))
4936, 39, 48rspcedvd 3467 . . . 4 (((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))
5049ex 397 . . 3 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOddW → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5135, 50embantd 59 . 2 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ((5 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOddW ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
5211, 51syldc 48 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  1c1 10139   + caddc 10141   < clt 10276  cle 10277  cmin 10468  3c3 11273  5c5 11275  8c8 11278  9c9 11279  cz 11579  cuz 11888   Even ceven 42065   Odd codd 42066   GoldbachOddW cgbow 42162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-even 42067  df-odd 42068
This theorem is referenced by:  nnsum4primeseven  42216
  Copyright terms: Public domain W3C validator