Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evengpoap3 Structured version   Visualization version   GIF version

Theorem evengpoap3 42195
Description: If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.)
Assertion
Ref Expression
evengpoap3 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Distinct variable groups:   𝑚,𝑁   𝑜,𝑁

Proof of Theorem evengpoap3
StepHypRef Expression
1 3odd 42125 . . . . . . 7 3 ∈ Odd
21a1i 11 . . . . . 6 (𝑁 ∈ (ℤ12) → 3 ∈ Odd )
32anim1i 593 . . . . 5 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
43ancomd 466 . . . 4 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
5 emoo 42121 . . . 4 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
64, 5syl 17 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ Odd )
7 breq2 4806 . . . . 5 (𝑚 = (𝑁 − 3) → (7 < 𝑚 ↔ 7 < (𝑁 − 3)))
8 eleq1 2825 . . . . 5 (𝑚 = (𝑁 − 3) → (𝑚 ∈ GoldbachOdd ↔ (𝑁 − 3) ∈ GoldbachOdd ))
97, 8imbi12d 333 . . . 4 (𝑚 = (𝑁 − 3) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
109adantl 473 . . 3 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ 𝑚 = (𝑁 − 3)) → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
116, 10rspcdv 3450 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd )))
12 eluz2 11883 . . . . 5 (𝑁 ∈ (ℤ12) ↔ (12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁))
13 7p3e10 11793 . . . . . . . . . 10 (7 + 3) = 10
14 1nn0 11498 . . . . . . . . . . 11 1 ∈ ℕ0
15 0nn0 11497 . . . . . . . . . . 11 0 ∈ ℕ0
16 2nn 11375 . . . . . . . . . . 11 2 ∈ ℕ
17 2pos 11302 . . . . . . . . . . 11 0 < 2
1814, 15, 16, 17declt 11720 . . . . . . . . . 10 10 < 12
1913, 18eqbrtri 4823 . . . . . . . . 9 (7 + 3) < 12
20 7re 11293 . . . . . . . . . . 11 7 ∈ ℝ
21 3re 11284 . . . . . . . . . . 11 3 ∈ ℝ
2220, 21readdcli 10243 . . . . . . . . . 10 (7 + 3) ∈ ℝ
23 2nn0 11499 . . . . . . . . . . . 12 2 ∈ ℕ0
2414, 23deccl 11702 . . . . . . . . . . 11 12 ∈ ℕ0
2524nn0rei 11493 . . . . . . . . . 10 12 ∈ ℝ
26 zre 11571 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
27 ltletr 10319 . . . . . . . . . 10 (((7 + 3) ∈ ℝ ∧ 12 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2822, 25, 26, 27mp3an12i 1575 . . . . . . . . 9 (𝑁 ∈ ℤ → (((7 + 3) < 12 ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁))
2919, 28mpani 714 . . . . . . . 8 (𝑁 ∈ ℤ → (12 ≤ 𝑁 → (7 + 3) < 𝑁))
3029imp 444 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
31303adant1 1125 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → (7 + 3) < 𝑁)
3220a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 ∈ ℝ)
3321a1i 11 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 3 ∈ ℝ)
34263ad2ant2 1129 . . . . . . 7 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 𝑁 ∈ ℝ)
3532, 33, 34ltaddsubd 10817 . . . . . 6 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → ((7 + 3) < 𝑁 ↔ 7 < (𝑁 − 3)))
3631, 35mpbid 222 . . . . 5 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 12 ≤ 𝑁) → 7 < (𝑁 − 3))
3712, 36sylbi 207 . . . 4 (𝑁 ∈ (ℤ12) → 7 < (𝑁 − 3))
3837adantr 472 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → 7 < (𝑁 − 3))
39 simpr 479 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 − 3) ∈ GoldbachOdd )
40 oveq1 6818 . . . . . . 7 (𝑜 = (𝑁 − 3) → (𝑜 + 3) = ((𝑁 − 3) + 3))
4140eqeq2d 2768 . . . . . 6 (𝑜 = (𝑁 − 3) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
4241adantl 473 . . . . 5 ((((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) ∧ 𝑜 = (𝑁 − 3)) → (𝑁 = (𝑜 + 3) ↔ 𝑁 = ((𝑁 − 3) + 3)))
43 eluzelcn 11889 . . . . . . . . 9 (𝑁 ∈ (ℤ12) → 𝑁 ∈ ℂ)
44 3cn 11285 . . . . . . . . 9 3 ∈ ℂ
4543, 44jctir 562 . . . . . . . 8 (𝑁 ∈ (ℤ12) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4645adantr 472 . . . . . . 7 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
4746adantr 472 . . . . . 6 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → (𝑁 ∈ ℂ ∧ 3 ∈ ℂ))
48 npcan 10480 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → ((𝑁 − 3) + 3) = 𝑁)
4948eqcomd 2764 . . . . . 6 ((𝑁 ∈ ℂ ∧ 3 ∈ ℂ) → 𝑁 = ((𝑁 − 3) + 3))
5047, 49syl 17 . . . . 5 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → 𝑁 = ((𝑁 − 3) + 3))
5139, 42, 50rspcedvd 3454 . . . 4 (((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) ∧ (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))
5251ex 449 . . 3 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((𝑁 − 3) ∈ GoldbachOdd → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5338, 52embantd 59 . 2 ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ((7 < (𝑁 − 3) → (𝑁 − 3) ∈ GoldbachOdd ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
5411, 53syldc 48 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137  wral 3048  wrex 3049   class class class wbr 4802  cfv 6047  (class class class)co 6811  cc 10124  cr 10125  0cc0 10126  1c1 10127   + caddc 10129   < clt 10264  cle 10265  cmin 10456  2c2 11260  3c3 11261  7c7 11265  cz 11567  cdc 11683  cuz 11877   Even ceven 42045   Odd codd 42046   GoldbachOdd cgbo 42143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-z 11568  df-dec 11684  df-uz 11878  df-even 42047  df-odd 42048
This theorem is referenced by:  nnsum4primesevenALTV  42197
  Copyright terms: Public domain W3C validator