Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  euxfr2 Structured version   Visualization version   GIF version

Theorem euxfr2 3424
 Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfr2.1 𝐴 ∈ V
euxfr2.2 ∃*𝑦 𝑥 = 𝐴
Assertion
Ref Expression
euxfr2 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euxfr2
StepHypRef Expression
1 2euswap 2577 . . . 4 (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
2 euxfr2.2 . . . . . 6 ∃*𝑦 𝑥 = 𝐴
32moani 2554 . . . . 5 ∃*𝑦(𝜑𝑥 = 𝐴)
4 ancom 465 . . . . . 6 ((𝜑𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝜑))
54mobii 2521 . . . . 5 (∃*𝑦(𝜑𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴𝜑))
63, 5mpbi 220 . . . 4 ∃*𝑦(𝑥 = 𝐴𝜑)
71, 6mpg 1764 . . 3 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))
8 2euswap 2577 . . . 4 (∀𝑦∃*𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑)))
9 moeq 3415 . . . . . 6 ∃*𝑥 𝑥 = 𝐴
109moani 2554 . . . . 5 ∃*𝑥(𝜑𝑥 = 𝐴)
114mobii 2521 . . . . 5 (∃*𝑥(𝜑𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴𝜑))
1210, 11mpbi 220 . . . 4 ∃*𝑥(𝑥 = 𝐴𝜑)
138, 12mpg 1764 . . 3 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑))
147, 13impbii 199 . 2 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝑥(𝑥 = 𝐴𝜑))
15 euxfr2.1 . . . 4 𝐴 ∈ V
16 biidd 252 . . . 4 (𝑥 = 𝐴 → (𝜑𝜑))
1715, 16ceqsexv 3273 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑)
1817eubii 2520 . 2 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
1914, 18bitri 264 1 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∃!weu 2498  ∃*wmo 2499  Vcvv 3231 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-v 3233 This theorem is referenced by:  euxfr  3425  euop2  5003
 Copyright terms: Public domain W3C validator