Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvnfb Structured version   Visualization version   GIF version

Theorem eusvnfb 4892
 Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusvnfb (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusvnfb
StepHypRef Expression
1 eusvnf 4891 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
2 euex 2522 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴)
3 eqvisset 3242 . . . . . 6 (𝑦 = 𝐴𝐴 ∈ V)
43sps 2093 . . . . 5 (∀𝑥 𝑦 = 𝐴𝐴 ∈ V)
54exlimiv 1898 . . . 4 (∃𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
62, 5syl 17 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
71, 6jca 553 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → (𝑥𝐴𝐴 ∈ V))
8 isset 3238 . . . . 5 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
9 nfcvd 2794 . . . . . . . 8 (𝑥𝐴𝑥𝑦)
10 id 22 . . . . . . . 8 (𝑥𝐴𝑥𝐴)
119, 10nfeqd 2801 . . . . . . 7 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
1211nf5rd 2104 . . . . . 6 (𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴))
1312eximdv 1886 . . . . 5 (𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴))
148, 13syl5bi 232 . . . 4 (𝑥𝐴 → (𝐴 ∈ V → ∃𝑦𝑥 𝑦 = 𝐴))
1514imp 444 . . 3 ((𝑥𝐴𝐴 ∈ V) → ∃𝑦𝑥 𝑦 = 𝐴)
16 eusv1 4890 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
1715, 16sylibr 224 . 2 ((𝑥𝐴𝐴 ∈ V) → ∃!𝑦𝑥 𝑦 = 𝐴)
187, 17impbii 199 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∃!weu 2498  Ⅎwnfc 2780  Vcvv 3231 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-nul 3949 This theorem is referenced by:  eusv2nf  4894  eusv2  4895
 Copyright terms: Public domain W3C validator