![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eupthvdres | Structured version Visualization version GIF version |
Description: Formerly part of proof of eupth2 27217: The vertex degree remains the same for all vertices if the edges are restricted to the edges of an Eulerian path. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 26-Feb-2021.) |
Ref | Expression |
---|---|
eupthvdres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
eupthvdres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
eupthvdres.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
eupthvdres.f | ⊢ (𝜑 → Fun 𝐼) |
eupthvdres.p | ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) |
eupthvdres.h | ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉 |
Ref | Expression |
---|---|
eupthvdres | ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupthvdres.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
2 | eupthvdres.h | . . . 4 ⊢ 𝐻 = 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉 | |
3 | opex 4962 | . . . 4 ⊢ 〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉 ∈ V | |
4 | 2, 3 | eqeltri 2726 | . . 3 ⊢ 𝐻 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 ∈ V) |
6 | 2 | fveq2i 6232 | . . . 4 ⊢ (Vtx‘𝐻) = (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉) |
7 | eupthvdres.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | fvex 6239 | . . . . . . . 8 ⊢ (Vtx‘𝐺) ∈ V | |
9 | 7, 8 | eqeltri 2726 | . . . . . . 7 ⊢ 𝑉 ∈ V |
10 | eupthvdres.i | . . . . . . . . 9 ⊢ 𝐼 = (iEdg‘𝐺) | |
11 | fvex 6239 | . . . . . . . . 9 ⊢ (iEdg‘𝐺) ∈ V | |
12 | 10, 11 | eqeltri 2726 | . . . . . . . 8 ⊢ 𝐼 ∈ V |
13 | 12 | resex 5478 | . . . . . . 7 ⊢ (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹)))) ∈ V |
14 | 9, 13 | pm3.2i 470 | . . . . . 6 ⊢ (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹)))) ∈ V) |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹)))) ∈ V)) |
16 | opvtxfv 25929 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹)))) ∈ V) → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉) = 𝑉) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉) = 𝑉) |
18 | 6, 17 | syl5eq 2697 | . . 3 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
19 | 18, 7 | syl6eq 2701 | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = (Vtx‘𝐺)) |
20 | 2 | fveq2i 6232 | . . . . 5 ⊢ (iEdg‘𝐻) = (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉) |
21 | opiedgfv 25932 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹)))) ∈ V) → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))) | |
22 | 15, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))〉) = (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))) |
23 | 20, 22 | syl5eq 2697 | . . . 4 ⊢ (𝜑 → (iEdg‘𝐻) = (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹))))) |
24 | eupthvdres.p | . . . . . . 7 ⊢ (𝜑 → 𝐹(EulerPaths‘𝐺)𝑃) | |
25 | 10 | eupthf1o 27182 | . . . . . . 7 ⊢ (𝐹(EulerPaths‘𝐺)𝑃 → 𝐹:(0..^(#‘𝐹))–1-1-onto→dom 𝐼) |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:(0..^(#‘𝐹))–1-1-onto→dom 𝐼) |
27 | f1ofo 6182 | . . . . . 6 ⊢ (𝐹:(0..^(#‘𝐹))–1-1-onto→dom 𝐼 → 𝐹:(0..^(#‘𝐹))–onto→dom 𝐼) | |
28 | foima 6158 | . . . . . 6 ⊢ (𝐹:(0..^(#‘𝐹))–onto→dom 𝐼 → (𝐹 “ (0..^(#‘𝐹))) = dom 𝐼) | |
29 | 26, 27, 28 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (0..^(#‘𝐹))) = dom 𝐼) |
30 | 29 | reseq2d 5428 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ (𝐹 “ (0..^(#‘𝐹)))) = (𝐼 ↾ dom 𝐼)) |
31 | eupthvdres.f | . . . . . 6 ⊢ (𝜑 → Fun 𝐼) | |
32 | funfn 5956 | . . . . . 6 ⊢ (Fun 𝐼 ↔ 𝐼 Fn dom 𝐼) | |
33 | 31, 32 | sylib 208 | . . . . 5 ⊢ (𝜑 → 𝐼 Fn dom 𝐼) |
34 | fnresdm 6038 | . . . . 5 ⊢ (𝐼 Fn dom 𝐼 → (𝐼 ↾ dom 𝐼) = 𝐼) | |
35 | 33, 34 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ↾ dom 𝐼) = 𝐼) |
36 | 23, 30, 35 | 3eqtrd 2689 | . . 3 ⊢ (𝜑 → (iEdg‘𝐻) = 𝐼) |
37 | 36, 10 | syl6eq 2701 | . 2 ⊢ (𝜑 → (iEdg‘𝐻) = (iEdg‘𝐺)) |
38 | 1, 5, 19, 37 | vtxdeqd 26429 | 1 ⊢ (𝜑 → (VtxDeg‘𝐻) = (VtxDeg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 〈cop 4216 class class class wbr 4685 dom cdm 5143 ↾ cres 5145 “ cima 5146 Fun wfun 5920 Fn wfn 5921 –onto→wfo 5924 –1-1-onto→wf1o 5925 ‘cfv 5926 (class class class)co 6690 0cc0 9974 ..^cfzo 12504 #chash 13157 Vtxcvtx 25919 iEdgciedg 25920 VtxDegcvtxdg 26417 EulerPathsceupth 27175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ifp 1033 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-vtx 25921 df-iedg 25922 df-vtxdg 26418 df-wlks 26551 df-trls 26645 df-eupth 27176 |
This theorem is referenced by: eupth2 27217 |
Copyright terms: Public domain | W3C validator |