MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupthres Structured version   Visualization version   GIF version

Theorem eupthres 27288
Description: The restriction 𝐻, 𝑄 of an Eulerian path 𝐹, 𝑃 to an initial segment of the path (of length 𝑁) forms an Eulerian path on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupth0.v 𝑉 = (Vtx‘𝐺)
eupth0.i 𝐼 = (iEdg‘𝐺)
eupthres.d (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthres.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
eupthres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
eupthres.h 𝐻 = (𝐹 ↾ (0..^𝑁))
eupthres.q 𝑄 = (𝑃 ↾ (0...𝑁))
eupthres.s (Vtx‘𝑆) = 𝑉
Assertion
Ref Expression
eupthres (𝜑𝐻(EulerPaths‘𝑆)𝑄)

Proof of Theorem eupthres
StepHypRef Expression
1 eupth0.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupth0.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthres.d . . . 4 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
4 eupthistrl 27284 . . . 4 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
5 trliswlk 26725 . . . 4 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
63, 4, 53syl 18 . . 3 (𝜑𝐹(Walks‘𝐺)𝑃)
7 eupthres.n . . 3 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
8 eupthres.s . . . 4 (Vtx‘𝑆) = 𝑉
98a1i 11 . . 3 (𝜑 → (Vtx‘𝑆) = 𝑉)
10 eupthres.e . . 3 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
11 eupthres.h . . 3 𝐻 = (𝐹 ↾ (0..^𝑁))
12 eupthres.q . . 3 𝑄 = (𝑃 ↾ (0...𝑁))
131, 2, 6, 7, 9, 10, 11, 12wlkres 26698 . 2 (𝜑𝐻(Walks‘𝑆)𝑄)
143, 4syl 17 . . 3 (𝜑𝐹(Trails‘𝐺)𝑃)
151, 2, 14, 7, 11trlreslem 26727 . 2 (𝜑𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
16 eqid 2724 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
1716iseupthf1o 27275 . . 3 (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆)))
1810dmeqd 5433 . . . . 5 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
1918f1oeq3d 6247 . . . 4 (𝜑 → (𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆) ↔ 𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
2019anbi2d 742 . . 3 (𝜑 → ((𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (iEdg‘𝑆)) ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))))
2117, 20syl5bb 272 . 2 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄 ↔ (𝐻(Walks‘𝑆)𝑄𝐻:(0..^(♯‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))))
2213, 15, 21mpbir2and 995 1 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103   class class class wbr 4760  dom cdm 5218  cres 5220  cima 5221  1-1-ontowf1o 6000  cfv 6001  (class class class)co 6765  0cc0 10049  ...cfz 12440  ..^cfzo 12580  chash 13232  Vtxcvtx 25994  iEdgciedg 25995  Walkscwlks 26623  Trailsctrls 26718  EulerPathsceupth 27270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1051  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-hash 13233  df-word 13406  df-substr 13410  df-wlks 26626  df-trls 26720  df-eupth 27271
This theorem is referenced by:  eucrct2eupth1  27317
  Copyright terms: Public domain W3C validator