MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2lem3lem3 Structured version   Visualization version   GIF version

Theorem eupth2lem3lem3 27407
Description: Lemma for eupth2lem3 27413, formerly part of proof of eupth2lem3 27413: If a loop {(𝑃𝑁), (𝑃‘(𝑁 + 1))} is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(Trails‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
eupth2lem3.o (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
eupth2lem3lem3.e (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
Assertion
Ref Expression
eupth2lem3lem3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Distinct variable groups:   𝑥,𝑈   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐼(𝑥)   𝑁(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem eupth2lem3lem3
StepHypRef Expression
1 trlsegvdeg.u . . . . 5 (𝜑𝑈𝑉)
2 fveq2 6332 . . . . . . . 8 (𝑥 = 𝑈 → ((VtxDeg‘𝑋)‘𝑥) = ((VtxDeg‘𝑋)‘𝑈))
32breq2d 4796 . . . . . . 7 (𝑥 = 𝑈 → (2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
43notbid 307 . . . . . 6 (𝑥 = 𝑈 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥) ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
54elrab3 3514 . . . . 5 (𝑈𝑉 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
61, 5syl 17 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈)))
7 eupth2lem3.o . . . . 5 (𝜑 → {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} = if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}))
87eleq2d 2835 . . . 4 (𝜑 → (𝑈 ∈ {𝑥𝑉 ∣ ¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑥)} ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
96, 8bitr3d 270 . . 3 (𝜑 → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
109adantr 466 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)})))
11 2z 11610 . . . . . 6 2 ∈ ℤ
1211a1i 11 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∈ ℤ)
13 trlsegvdeg.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
14 trlsegvdeg.i . . . . . . . 8 𝐼 = (iEdg‘𝐺)
15 trlsegvdeg.f . . . . . . . 8 (𝜑 → Fun 𝐼)
16 trlsegvdeg.n . . . . . . . 8 (𝜑𝑁 ∈ (0..^(♯‘𝐹)))
17 trlsegvdeg.w . . . . . . . 8 (𝜑𝐹(Trails‘𝐺)𝑃)
18 trlsegvdeg.vx . . . . . . . 8 (𝜑 → (Vtx‘𝑋) = 𝑉)
19 trlsegvdeg.vy . . . . . . . 8 (𝜑 → (Vtx‘𝑌) = 𝑉)
20 trlsegvdeg.vz . . . . . . . 8 (𝜑 → (Vtx‘𝑍) = 𝑉)
21 trlsegvdeg.ix . . . . . . . 8 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
22 trlsegvdeg.iy . . . . . . . 8 (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
23 trlsegvdeg.iz . . . . . . . 8 (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
2413, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem1 27405 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℕ0)
2524nn0zd 11681 . . . . . 6 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2625adantr 466 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ)
2713, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 23eupth2lem3lem2 27406 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℕ0)
2827nn0zd 11681 . . . . . 6 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
2928adantr 466 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((VtxDeg‘𝑌)‘𝑈) ∈ ℤ)
30 iddvds 15203 . . . . . . . 8 (2 ∈ ℤ → 2 ∥ 2)
3111, 30ax-mp 5 . . . . . . 7 2 ∥ 2
3219ad2antrr 697 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
33 fvexd 6344 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐹𝑁) ∈ V)
341ad2antrr 697 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 𝑈𝑉)
3522ad2antrr 697 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
36 eupth2lem3lem3.e . . . . . . . . . . . . . 14 (𝜑 → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
3736adantr 466 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))))
38 ifptru 1059 . . . . . . . . . . . . . 14 ((𝑃𝑁) = (𝑃‘(𝑁 + 1)) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
3938adantl 467 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (if-((𝑃𝑁) = (𝑃‘(𝑁 + 1)), (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}, {(𝑃𝑁), (𝑃‘(𝑁 + 1))} ⊆ (𝐼‘(𝐹𝑁))) ↔ (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)}))
4037, 39mpbid 222 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝐼‘(𝐹𝑁)) = {(𝑃𝑁)})
41 sneq 4324 . . . . . . . . . . . . 13 ((𝑃𝑁) = 𝑈 → {(𝑃𝑁)} = {𝑈})
4241eqcoms 2778 . . . . . . . . . . . 12 (𝑈 = (𝑃𝑁) → {(𝑃𝑁)} = {𝑈})
4340, 42sylan9eq 2824 . . . . . . . . . . 11 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (𝐼‘(𝐹𝑁)) = {𝑈})
4443opeq2d 4544 . . . . . . . . . 10 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {𝑈}⟩)
4544sneqd 4326 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {𝑈}⟩})
4635, 45eqtrd 2804 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {𝑈}⟩})
4732, 33, 34, 461loopgrvd2 26633 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 2)
4831, 47syl5breqr 4822 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 = (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
49 dvds0 15205 . . . . . . . 8 (2 ∈ ℤ → 2 ∥ 0)
5011, 49ax-mp 5 . . . . . . 7 2 ∥ 0
5119ad2antrr 697 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (Vtx‘𝑌) = 𝑉)
52 fvexd 6344 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝐹𝑁) ∈ V)
5313, 14, 15, 16, 1, 17trlsegvdeglem1 27397 . . . . . . . . . 10 (𝜑 → ((𝑃𝑁) ∈ 𝑉 ∧ (𝑃‘(𝑁 + 1)) ∈ 𝑉))
5453simpld 476 . . . . . . . . 9 (𝜑 → (𝑃𝑁) ∈ 𝑉)
5554ad2antrr 697 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑃𝑁) ∈ 𝑉)
5622adantr 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
5740opeq2d 4544 . . . . . . . . . . 11 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩ = ⟨(𝐹𝑁), {(𝑃𝑁)}⟩)
5857sneqd 4326 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩} = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
5956, 58eqtrd 2804 . . . . . . . . 9 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
6059adantr 466 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (iEdg‘𝑌) = {⟨(𝐹𝑁), {(𝑃𝑁)}⟩})
611adantr 466 . . . . . . . . . 10 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 𝑈𝑉)
6261anim1i 594 . . . . . . . . 9 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
63 eldifsn 4451 . . . . . . . . 9 (𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}) ↔ (𝑈𝑉𝑈 ≠ (𝑃𝑁)))
6462, 63sylibr 224 . . . . . . . 8 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 𝑈 ∈ (𝑉 ∖ {(𝑃𝑁)}))
6551, 52, 55, 60, 641loopgrvd0 26634 . . . . . . 7 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → ((VtxDeg‘𝑌)‘𝑈) = 0)
6650, 65syl5breqr 4822 . . . . . 6 (((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) ∧ 𝑈 ≠ (𝑃𝑁)) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
6748, 66pm2.61dane 3029 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → 2 ∥ ((VtxDeg‘𝑌)‘𝑈))
68 dvdsadd2b 15236 . . . . 5 ((2 ∈ ℤ ∧ ((VtxDeg‘𝑋)‘𝑈) ∈ ℤ ∧ (((VtxDeg‘𝑌)‘𝑈) ∈ ℤ ∧ 2 ∥ ((VtxDeg‘𝑌)‘𝑈))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
6912, 26, 29, 67, 68syl112anc 1479 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈))))
7027nn0cnd 11554 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑌)‘𝑈) ∈ ℂ)
7124nn0cnd 11554 . . . . . . 7 (𝜑 → ((VtxDeg‘𝑋)‘𝑈) ∈ ℂ)
7270, 71addcomd 10439 . . . . . 6 (𝜑 → (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) = (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)))
7372breq2d 4796 . . . . 5 (𝜑 → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7473adantr 466 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ (((VtxDeg‘𝑌)‘𝑈) + ((VtxDeg‘𝑋)‘𝑈)) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7569, 74bitrd 268 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
7675notbid 307 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ ((VtxDeg‘𝑋)‘𝑈) ↔ ¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈))))
77 simpr 471 . . . . 5 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑃𝑁) = (𝑃‘(𝑁 + 1)))
7877eqeq2d 2780 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → ((𝑃‘0) = (𝑃𝑁) ↔ (𝑃‘0) = (𝑃‘(𝑁 + 1))))
7977preq2d 4409 . . . 4 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → {(𝑃‘0), (𝑃𝑁)} = {(𝑃‘0), (𝑃‘(𝑁 + 1))})
8078, 79ifbieq2d 4248 . . 3 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) = if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))}))
8180eleq2d 2835 . 2 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (𝑈 ∈ if((𝑃‘0) = (𝑃𝑁), ∅, {(𝑃‘0), (𝑃𝑁)}) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
8210, 76, 813bitr3d 298 1 ((𝜑 ∧ (𝑃𝑁) = (𝑃‘(𝑁 + 1))) → (¬ 2 ∥ (((VtxDeg‘𝑋)‘𝑈) + ((VtxDeg‘𝑌)‘𝑈)) ↔ 𝑈 ∈ if((𝑃‘0) = (𝑃‘(𝑁 + 1)), ∅, {(𝑃‘0), (𝑃‘(𝑁 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  if-wif 1048   = wceq 1630  wcel 2144  wne 2942  {crab 3064  Vcvv 3349  cdif 3718  wss 3721  c0 4061  ifcif 4223  {csn 4314  {cpr 4316  cop 4320   class class class wbr 4784  cres 5251  cima 5252  Fun wfun 6025  cfv 6031  (class class class)co 6792  0cc0 10137  1c1 10138   + caddc 10140  2c2 11271  cz 11578  ...cfz 12532  ..^cfzo 12672  chash 13320  cdvds 15188  Vtxcvtx 26094  iEdgciedg 26095  VtxDegcvtxdg 26595  Trailsctrls 26821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-ifp 1049  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-xadd 12151  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-dvds 15189  df-edg 26160  df-uhgr 26173  df-ushgr 26174  df-uspgr 26266  df-vtxdg 26596  df-wlks 26729  df-trls 26823
This theorem is referenced by:  eupth2lem3lem7  27411
  Copyright terms: Public domain W3C validator