MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupth2eucrct Structured version   Visualization version   GIF version

Theorem eupth2eucrct 27195
Description: Append one path segment to an Eulerian path 𝐹, 𝑃 which may not be an (Eulerian) circuit to become an Eulerian circuit 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. (Contributed by AV, 11-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
eupthp1.v 𝑉 = (Vtx‘𝐺)
eupthp1.i 𝐼 = (iEdg‘𝐺)
eupthp1.f (𝜑 → Fun 𝐼)
eupthp1.a (𝜑𝐼 ∈ Fin)
eupthp1.b (𝜑𝐵 ∈ V)
eupthp1.c (𝜑𝐶𝑉)
eupthp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
eupthp1.p (𝜑𝐹(EulerPaths‘𝐺)𝑃)
eupthp1.n 𝑁 = (#‘𝐹)
eupthp1.e (𝜑𝐸 ∈ (Edg‘𝐺))
eupthp1.x (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
eupthp1.u (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
eupthp1.h 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
eupthp1.q 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
eupthp1.s (Vtx‘𝑆) = 𝑉
eupthp1.l ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
eupth2eucrct.c (𝜑𝐶 = (𝑃‘0))
Assertion
Ref Expression
eupth2eucrct (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))

Proof of Theorem eupth2eucrct
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eupthp1.v . . 3 𝑉 = (Vtx‘𝐺)
2 eupthp1.i . . 3 𝐼 = (iEdg‘𝐺)
3 eupthp1.f . . 3 (𝜑 → Fun 𝐼)
4 eupthp1.a . . 3 (𝜑𝐼 ∈ Fin)
5 eupthp1.b . . 3 (𝜑𝐵 ∈ V)
6 eupthp1.c . . 3 (𝜑𝐶𝑉)
7 eupthp1.d . . 3 (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
8 eupthp1.p . . 3 (𝜑𝐹(EulerPaths‘𝐺)𝑃)
9 eupthp1.n . . 3 𝑁 = (#‘𝐹)
10 eupthp1.e . . 3 (𝜑𝐸 ∈ (Edg‘𝐺))
11 eupthp1.x . . 3 (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)
12 eupthp1.u . . 3 (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩})
13 eupthp1.h . . 3 𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})
14 eupthp1.q . . 3 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})
15 eupthp1.s . . 3 (Vtx‘𝑆) = 𝑉
16 eupthp1.l . . 3 ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16eupthp1 27194 . 2 (𝜑𝐻(EulerPaths‘𝑆)𝑄)
18 simpr 476 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(EulerPaths‘𝑆)𝑄)
19 eupthistrl 27189 . . . . 5 (𝐻(EulerPaths‘𝑆)𝑄𝐻(Trails‘𝑆)𝑄)
2019adantl 481 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Trails‘𝑆)𝑄)
21 fveq2 6229 . . . . . . . 8 (𝑘 = 0 → (𝑄𝑘) = (𝑄‘0))
22 fveq2 6229 . . . . . . . 8 (𝑘 = 0 → (𝑃𝑘) = (𝑃‘0))
2321, 22eqeq12d 2666 . . . . . . 7 (𝑘 = 0 → ((𝑄𝑘) = (𝑃𝑘) ↔ (𝑄‘0) = (𝑃‘0)))
24 eupthiswlk 27190 . . . . . . . . 9 (𝐹(EulerPaths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
258, 24syl 17 . . . . . . . 8 (𝜑𝐹(Walks‘𝐺)𝑃)
2612a1i 11 . . . . . . . 8 (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))
2715a1i 11 . . . . . . . 8 (𝜑 → (Vtx‘𝑆) = 𝑉)
281, 2, 3, 4, 5, 6, 7, 25, 9, 10, 11, 26, 13, 14, 27wlkp1lem5 26630 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
292wlkf 26566 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
3024, 29syl 17 . . . . . . . 8 (𝐹(EulerPaths‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
31 lencl 13356 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐼 → (#‘𝐹) ∈ ℕ0)
329eleq1i 2721 . . . . . . . . . 10 (𝑁 ∈ ℕ0 ↔ (#‘𝐹) ∈ ℕ0)
33 0elfz 12475 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3432, 33sylbir 225 . . . . . . . . 9 ((#‘𝐹) ∈ ℕ0 → 0 ∈ (0...𝑁))
3531, 34syl 17 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼 → 0 ∈ (0...𝑁))
368, 30, 353syl 18 . . . . . . 7 (𝜑 → 0 ∈ (0...𝑁))
3723, 28, 36rspcdva 3347 . . . . . 6 (𝜑 → (𝑄‘0) = (𝑃‘0))
3837adantr 480 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑃‘0))
39 eupth2eucrct.c . . . . . . 7 (𝜑𝐶 = (𝑃‘0))
4039eqcomd 2657 . . . . . 6 (𝜑 → (𝑃‘0) = 𝐶)
4140adantr 480 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑃‘0) = 𝐶)
4214a1i 11 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩}))
4313fveq2i 6232 . . . . . . . . 9 (#‘𝐻) = (#‘(𝐹 ∪ {⟨𝑁, 𝐵⟩}))
4443a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (#‘𝐻) = (#‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})))
45 wrdfin 13355 . . . . . . . . . . . 12 (𝐹 ∈ Word dom 𝐼𝐹 ∈ Fin)
4629, 45syl 17 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Fin)
478, 24, 463syl 18 . . . . . . . . . 10 (𝜑𝐹 ∈ Fin)
4847adantr 480 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐹 ∈ Fin)
49 snfi 8079 . . . . . . . . . 10 {⟨𝑁, 𝐵⟩} ∈ Fin
5049a1i 11 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → {⟨𝑁, 𝐵⟩} ∈ Fin)
51 wrddm 13344 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom 𝐼 → dom 𝐹 = (0..^(#‘𝐹)))
528, 30, 513syl 18 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = (0..^(#‘𝐹)))
53 fzonel 12522 . . . . . . . . . . . . . . . 16 ¬ (#‘𝐹) ∈ (0..^(#‘𝐹))
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (#‘𝐹) ∈ (0..^(#‘𝐹)))
559eleq1i 2721 . . . . . . . . . . . . . . 15 (𝑁 ∈ (0..^(#‘𝐹)) ↔ (#‘𝐹) ∈ (0..^(#‘𝐹)))
5654, 55sylnibr 318 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑁 ∈ (0..^(#‘𝐹)))
57 eleq2 2719 . . . . . . . . . . . . . . 15 (dom 𝐹 = (0..^(#‘𝐹)) → (𝑁 ∈ dom 𝐹𝑁 ∈ (0..^(#‘𝐹))))
5857notbid 307 . . . . . . . . . . . . . 14 (dom 𝐹 = (0..^(#‘𝐹)) → (¬ 𝑁 ∈ dom 𝐹 ↔ ¬ 𝑁 ∈ (0..^(#‘𝐹))))
5956, 58syl5ibrcom 237 . . . . . . . . . . . . 13 (𝜑 → (dom 𝐹 = (0..^(#‘𝐹)) → ¬ 𝑁 ∈ dom 𝐹))
60 fvex 6239 . . . . . . . . . . . . . . . 16 (#‘𝐹) ∈ V
619, 60eqeltri 2726 . . . . . . . . . . . . . . 15 𝑁 ∈ V
6261a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ V)
6362, 5opeldmd 5359 . . . . . . . . . . . . 13 (𝜑 → (⟨𝑁, 𝐵⟩ ∈ 𝐹𝑁 ∈ dom 𝐹))
6459, 63nsyld 154 . . . . . . . . . . . 12 (𝜑 → (dom 𝐹 = (0..^(#‘𝐹)) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹))
6552, 64mpd 15 . . . . . . . . . . 11 (𝜑 → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6665adantr 480 . . . . . . . . . 10 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
67 disjsn 4278 . . . . . . . . . 10 ((𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅ ↔ ¬ ⟨𝑁, 𝐵⟩ ∈ 𝐹)
6866, 67sylibr 224 . . . . . . . . 9 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅)
69 hashun 13209 . . . . . . . . 9 ((𝐹 ∈ Fin ∧ {⟨𝑁, 𝐵⟩} ∈ Fin ∧ (𝐹 ∩ {⟨𝑁, 𝐵⟩}) = ∅) → (#‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((#‘𝐹) + (#‘{⟨𝑁, 𝐵⟩})))
7048, 50, 68, 69syl3anc 1366 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (#‘(𝐹 ∪ {⟨𝑁, 𝐵⟩})) = ((#‘𝐹) + (#‘{⟨𝑁, 𝐵⟩})))
719eqcomi 2660 . . . . . . . . . 10 (#‘𝐹) = 𝑁
72 opex 4962 . . . . . . . . . . 11 𝑁, 𝐵⟩ ∈ V
73 hashsng 13197 . . . . . . . . . . 11 (⟨𝑁, 𝐵⟩ ∈ V → (#‘{⟨𝑁, 𝐵⟩}) = 1)
7472, 73ax-mp 5 . . . . . . . . . 10 (#‘{⟨𝑁, 𝐵⟩}) = 1
7571, 74oveq12i 6702 . . . . . . . . 9 ((#‘𝐹) + (#‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1)
7675a1i 11 . . . . . . . 8 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((#‘𝐹) + (#‘{⟨𝑁, 𝐵⟩})) = (𝑁 + 1))
7744, 70, 763eqtrd 2689 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (#‘𝐻) = (𝑁 + 1))
7842, 77fveq12d 6235 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘(#‘𝐻)) = ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)))
79 ovexd 6720 . . . . . . . . 9 (𝜑 → (𝑁 + 1) ∈ V)
801, 2, 3, 4, 5, 6, 7, 25, 9wlkp1lem1 26626 . . . . . . . . 9 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
8179, 6, 803jca 1261 . . . . . . . 8 (𝜑 → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
8281adantr 480 . . . . . . 7 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃))
83 fsnunfv 6494 . . . . . . 7 (((𝑁 + 1) ∈ V ∧ 𝐶𝑉 ∧ ¬ (𝑁 + 1) ∈ dom 𝑃) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8482, 83syl 17 . . . . . 6 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → ((𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})‘(𝑁 + 1)) = 𝐶)
8578, 84eqtr2d 2686 . . . . 5 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐶 = (𝑄‘(#‘𝐻)))
8638, 41, 853eqtrd 2689 . . . 4 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝑄‘0) = (𝑄‘(#‘𝐻)))
87 iscrct 26741 . . . 4 (𝐻(Circuits‘𝑆)𝑄 ↔ (𝐻(Trails‘𝑆)𝑄 ∧ (𝑄‘0) = (𝑄‘(#‘𝐻))))
8820, 86, 87sylanbrc 699 . . 3 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → 𝐻(Circuits‘𝑆)𝑄)
8918, 88jca 553 . 2 ((𝜑𝐻(EulerPaths‘𝑆)𝑄) → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
9017, 89mpdan 703 1 (𝜑 → (𝐻(EulerPaths‘𝑆)𝑄𝐻(Circuits‘𝑆)𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  {cpr 4212  cop 4216   class class class wbr 4685  dom cdm 5143  Fun wfun 5920  cfv 5926  (class class class)co 6690  Fincfn 7997  0cc0 9974  1c1 9975   + caddc 9977  0cn0 11330  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323  Vtxcvtx 25919  iEdgciedg 25920  Edgcedg 25984  Walkscwlks 26548  Trailsctrls 26643  Circuitsccrcts 26735  EulerPathsceupth 27175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551  df-trls 26645  df-crcts 26737  df-eupth 27176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator