MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupicka Structured version   Visualization version   GIF version

Theorem eupicka 2686
Description: Version of eupick 2685 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))

Proof of Theorem eupicka
StepHypRef Expression
1 nfeu1 2628 . . 3 𝑥∃!𝑥𝜑
2 nfe1 2183 . . 3 𝑥𝑥(𝜑𝜓)
31, 2nfan 1980 . 2 𝑥(∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓))
4 eupick 2685 . 2 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
53, 4alrimi 2238 1 ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1629  wex 1852  ∃!weu 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-11 2190  ax-12 2203
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-eu 2622  df-mo 2623
This theorem is referenced by:  eupickbi  2688  frege124d  38579  sbiota1  39161
  Copyright terms: Public domain W3C validator