![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euor2 | Structured version Visualization version GIF version |
Description: Introduce or eliminate a disjunct in a uniqueness quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 27-Dec-2018.) |
Ref | Expression |
---|---|
euor2 | ⊢ (¬ ∃𝑥𝜑 → (∃!𝑥(𝜑 ∨ 𝜓) ↔ ∃!𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2182 | . . 3 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
2 | 1 | nfn 1934 | . 2 ⊢ Ⅎ𝑥 ¬ ∃𝑥𝜑 |
3 | 19.8a 2205 | . . . 4 ⊢ (𝜑 → ∃𝑥𝜑) | |
4 | 3 | con3i 151 | . . 3 ⊢ (¬ ∃𝑥𝜑 → ¬ 𝜑) |
5 | biorf 896 | . . . 4 ⊢ (¬ 𝜑 → (𝜓 ↔ (𝜑 ∨ 𝜓))) | |
6 | 5 | bicomd 213 | . . 3 ⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
7 | 4, 6 | syl 17 | . 2 ⊢ (¬ ∃𝑥𝜑 → ((𝜑 ∨ 𝜓) ↔ 𝜓)) |
8 | 2, 7 | eubid 2635 | 1 ⊢ (¬ ∃𝑥𝜑 → (∃!𝑥(𝜑 ∨ 𝜓) ↔ ∃!𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 826 ∃wex 1851 ∃!weu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-10 2173 ax-12 2202 |
This theorem depends on definitions: df-bi 197 df-or 827 df-ex 1852 df-nf 1857 df-eu 2621 |
This theorem is referenced by: reuun2 4056 |
Copyright terms: Public domain | W3C validator |