![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eunex | Structured version Visualization version GIF version |
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.) |
Ref | Expression |
---|---|
eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dtru 4887 | . . . . 5 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | alim 1778 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∀𝑥𝜑 → ∀𝑥 𝑥 = 𝑦)) | |
3 | 1, 2 | mtoi 190 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
4 | 3 | exlimiv 1898 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ¬ ∀𝑥𝜑) |
5 | 4 | adantl 481 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → ¬ ∀𝑥𝜑) |
6 | eu3v 2526 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | |
7 | exnal 1794 | . 2 ⊢ (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑) | |
8 | 5, 6, 7 | 3imtr4i 281 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∀wal 1521 ∃wex 1744 ∃!weu 2498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-nul 4822 ax-pow 4873 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-eu 2502 df-mo 2503 |
This theorem is referenced by: reusv2lem2 4899 reusv2lem2OLD 4900 unnt 32532 amosym1 32550 alneu 41522 |
Copyright terms: Public domain | W3C validator |