MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eumoOLD Structured version   Visualization version   GIF version

Theorem eumoOLD 2637
Description: Obsolete proof of eumo 2636 as of 19-Feb-2022. (Contributed by NM, 23-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eumoOLD (∃!𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem eumoOLD
StepHypRef Expression
1 eu5 2633 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
21simprbi 483 1 (∃!𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1853  ∃!weu 2607  ∃*wmo 2608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054
This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1854  df-eu 2611  df-mo 2612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator