![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemt0 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 30774. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
eulerpart.j | ⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
eulerpart.f | ⊢ 𝐹 = (𝑥 ∈ 𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) |
eulerpart.h | ⊢ 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} |
eulerpart.m | ⊢ 𝑀 = (𝑟 ∈ 𝐻 ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
eulerpart.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpart.t | ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
Ref | Expression |
---|---|
eulerpartlemt0 | ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5451 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
2 | 1 | imaeq1d 5623 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
3 | 2 | sseq1d 3773 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ⊆ 𝐽 ↔ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
4 | eulerpart.t | . . . 4 ⊢ 𝑇 = {𝑓 ∈ (ℕ0 ↑𝑚 ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} | |
5 | 3, 4 | elrab2 3507 | . . 3 ⊢ (𝐴 ∈ 𝑇 ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
6 | 2 | eleq1d 2824 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
7 | eulerpart.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
8 | 6, 7 | elab4g 3495 | . . 3 ⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
9 | 5, 8 | anbi12i 735 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin))) |
10 | elin 3939 | . 2 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ 𝑇 ∧ 𝐴 ∈ 𝑅)) | |
11 | elex 3352 | . . . . 5 ⊢ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) → 𝐴 ∈ V) | |
12 | 11 | pm4.71i 667 | . . . 4 ⊢ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ 𝐴 ∈ V)) |
13 | 12 | anbi1i 733 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ 𝐴 ∈ V) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) |
14 | 3anass 1081 | . . 3 ⊢ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) | |
15 | an42 901 | . . 3 ⊢ (((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin)) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ 𝐴 ∈ V) ∧ ((◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽))) | |
16 | 13, 14, 15 | 3bitr4i 292 | . 2 ⊢ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ↔ ((𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ⊆ 𝐽) ∧ (𝐴 ∈ V ∧ (◡𝐴 “ ℕ) ∈ Fin))) |
17 | 9, 10, 16 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ (𝑇 ∩ 𝑅) ↔ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ (◡𝐴 “ ℕ) ⊆ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {cab 2746 ∀wral 3050 {crab 3054 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 𝒫 cpw 4302 class class class wbr 4804 {copab 4864 ↦ cmpt 4881 ◡ccnv 5265 “ cima 5269 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 supp csupp 7464 ↑𝑚 cmap 8025 Fincfn 8123 1c1 10149 · cmul 10153 ≤ cle 10287 ℕcn 11232 2c2 11282 ℕ0cn0 11504 ↑cexp 13074 Σcsu 14635 ∥ cdvds 15202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 |
This theorem is referenced by: eulerpartlemf 30762 eulerpartlemt 30763 eulerpartlemmf 30767 eulerpartlemgvv 30768 eulerpartlemgu 30769 eulerpartlemgh 30770 eulerpartlemgs2 30772 eulerpartlemn 30773 |
Copyright terms: Public domain | W3C validator |