![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsv3 | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 30572. Value of the sum of a finite partition 𝐴 (Contributed by Thierry Arnoux, 19-Aug-2018.) |
Ref | Expression |
---|---|
eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
Ref | Expression |
---|---|
eulerpartlemsv3 | ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eulerpartlems.r | . . 3 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | eulerpartlems.s | . . 3 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
3 | 1, 2 | eulerpartlemsv1 30546 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
4 | fzssuz 12420 | . . . . 5 ⊢ (1...(𝑆‘𝐴)) ⊆ (ℤ≥‘1) | |
5 | nnuz 11761 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
6 | 4, 5 | sseqtr4i 3671 | . . . 4 ⊢ (1...(𝑆‘𝐴)) ⊆ ℕ |
7 | 6 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (1...(𝑆‘𝐴)) ⊆ ℕ) |
8 | 1, 2 | eulerpartlemelr 30547 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
9 | 8 | simpld 474 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝐴:ℕ⟶ℕ0) |
11 | 7 | sselda 3636 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℕ) |
12 | 10, 11 | ffvelrnd 6400 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℕ0) |
13 | 12 | nn0cnd 11391 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → (𝐴‘𝑘) ∈ ℂ) |
14 | 11 | nncnd 11074 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → 𝑘 ∈ ℂ) |
15 | 13, 14 | mulcld 10098 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆‘𝐴))) → ((𝐴‘𝑘) · 𝑘) ∈ ℂ) |
16 | 1, 2 | eulerpartlems 30550 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))) → (𝐴‘𝑡) = 0) |
17 | 16 | ralrimiva 2995 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
18 | fveq2 6229 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑡 → (𝐴‘𝑘) = (𝐴‘𝑡)) | |
19 | 18 | eqeq1d 2653 | . . . . . . . . 9 ⊢ (𝑘 = 𝑡 → ((𝐴‘𝑘) = 0 ↔ (𝐴‘𝑡) = 0)) |
20 | 19 | cbvralv 3201 | . . . . . . . 8 ⊢ (∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0 ↔ ∀𝑡 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑡) = 0) |
21 | 17, 20 | sylibr 224 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0) |
22 | 1, 2 | eulerpartlemsf 30549 | . . . . . . . . . 10 ⊢ 𝑆:((ℕ0 ↑𝑚 ℕ) ∩ 𝑅)⟶ℕ0 |
23 | 22 | ffvelrni 6398 | . . . . . . . . 9 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) ∈ ℕ0) |
24 | nndiffz1 29676 | . . . . . . . . 9 ⊢ ((𝑆‘𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) | |
25 | 23, 24 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (ℕ ∖ (1...(𝑆‘𝐴))) = (ℤ≥‘((𝑆‘𝐴) + 1))) |
26 | 25 | raleqdv 3174 | . . . . . . 7 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0 ↔ ∀𝑘 ∈ (ℤ≥‘((𝑆‘𝐴) + 1))(𝐴‘𝑘) = 0)) |
27 | 21, 26 | mpbird 247 | . . . . . 6 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ∀𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))(𝐴‘𝑘) = 0) |
28 | 27 | r19.21bi 2961 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (𝐴‘𝑘) = 0) |
29 | 28 | oveq1d 6705 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = (0 · 𝑘)) |
30 | simpr 476 | . . . . . . 7 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) | |
31 | 30 | eldifad 3619 | . . . . . 6 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℕ) |
32 | 31 | nncnd 11074 | . . . . 5 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → 𝑘 ∈ ℂ) |
33 | 32 | mul02d 10272 | . . . 4 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → (0 · 𝑘) = 0) |
34 | 29, 33 | eqtrd 2685 | . . 3 ⊢ ((𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (ℕ ∖ (1...(𝑆‘𝐴)))) → ((𝐴‘𝑘) · 𝑘) = 0) |
35 | 5 | eqimssi 3692 | . . . 4 ⊢ ℕ ⊆ (ℤ≥‘1) |
36 | 35 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → ℕ ⊆ (ℤ≥‘1)) |
37 | 7, 15, 34, 36 | sumss 14499 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘)) |
38 | 3, 37 | eqtr4d 2688 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝑆‘𝐴) = Σ𝑘 ∈ (1...(𝑆‘𝐴))((𝐴‘𝑘) · 𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 ↦ cmpt 4762 ◡ccnv 5142 “ cima 5146 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 Fincfn 7997 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 ℕcn 11058 ℕ0cn0 11330 ℤ≥cuz 11725 ...cfz 12364 Σcsu 14460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-fl 12633 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-rlim 14264 df-sum 14461 |
This theorem is referenced by: eulerpartlemgc 30552 |
Copyright terms: Public domain | W3C validator |