Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemmf Structured version   Visualization version   GIF version

Theorem eulerpartlemmf 30565
Description: Lemma for eulerpart 30572. (Contributed by Thierry Arnoux, 30-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemmf (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑥,𝑦,𝑧   𝑓,𝑜,𝑟,𝐴   𝑜,𝐹   𝐻,𝑟   𝑓,𝐽   𝑛,𝑜,𝑟,𝐽,𝑥,𝑦   𝑜,𝑀   𝑓,𝑁   𝑔,𝑛,𝑃   𝑅,𝑜   𝑇,𝑜
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜)   𝐽(𝑧,𝑔,𝑘)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemmf
StepHypRef Expression
1 bitsf1o 15214 . . . . 5 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
2 f1of 6175 . . . . 5 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin))
31, 2ax-mp 5 . . . 4 (bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin)
4 eulerpart.p . . . . . . . . 9 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . . . . . 9 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . . . . . 9 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
7 eulerpart.j . . . . . . . . 9 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
8 eulerpart.f . . . . . . . . 9 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 eulerpart.h . . . . . . . . 9 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
10 eulerpart.m . . . . . . . . 9 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
11 eulerpart.r . . . . . . . . 9 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
12 eulerpart.t . . . . . . . . 9 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
134, 5, 6, 7, 8, 9, 10, 11, 12eulerpartlemt0 30559 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1413biimpi 206 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1514simp1d 1093 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0𝑚 ℕ))
16 nn0ex 11336 . . . . . . 7 0 ∈ V
17 nnex 11064 . . . . . . 7 ℕ ∈ V
1816, 17elmap 7928 . . . . . 6 (𝐴 ∈ (ℕ0𝑚 ℕ) ↔ 𝐴:ℕ⟶ℕ0)
1915, 18sylib 208 . . . . 5 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
20 ssrab2 3720 . . . . . 6 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
217, 20eqsstri 3668 . . . . 5 𝐽 ⊆ ℕ
22 fssres 6108 . . . . 5 ((𝐴:ℕ⟶ℕ0𝐽 ⊆ ℕ) → (𝐴𝐽):𝐽⟶ℕ0)
2319, 21, 22sylancl 695 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽):𝐽⟶ℕ0)
24 fco2 6097 . . . 4 (((bits ↾ ℕ0):ℕ0⟶(𝒫 ℕ0 ∩ Fin) ∧ (𝐴𝐽):𝐽⟶ℕ0) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
253, 23, 24sylancr 696 . . 3 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
2616pwex 4878 . . . . 5 𝒫 ℕ0 ∈ V
2726inex1 4832 . . . 4 (𝒫 ℕ0 ∩ Fin) ∈ V
2817, 21ssexi 4836 . . . 4 𝐽 ∈ V
2927, 28elmap 7928 . . 3 ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ↔ (bits ∘ (𝐴𝐽)):𝐽⟶(𝒫 ℕ0 ∩ Fin))
3025, 29sylibr 224 . 2 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽))
3114simp2d 1094 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ∈ Fin)
32 0nn0 11345 . . . . . . . . 9 0 ∈ ℕ0
33 suppimacnv 7351 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ 0 ∈ ℕ0) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
3432, 33mpan2 707 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (V ∖ {0})))
35 frnsuppeq 7352 . . . . . . . . . 10 ((ℕ ∈ V ∧ 0 ∈ ℕ0) → (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0}))))
3617, 32, 35mp2an 708 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3719, 36syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝐴 supp 0) = (𝐴 “ (ℕ0 ∖ {0})))
3834, 37eqtr3d 2687 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) = (𝐴 “ (ℕ0 ∖ {0})))
3938eleq1d 2715 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin))
40 dfn2 11343 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
4140imaeq2i 5499 . . . . . . 7 (𝐴 “ ℕ) = (𝐴 “ (ℕ0 ∖ {0}))
4241eleq1i 2721 . . . . . 6 ((𝐴 “ ℕ) ∈ Fin ↔ (𝐴 “ (ℕ0 ∖ {0})) ∈ Fin)
4339, 42syl6bbr 278 . . . . 5 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ (V ∖ {0})) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
4431, 43mpbird 247 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ (V ∖ {0})) ∈ Fin)
45 resss 5457 . . . . 5 (𝐴𝐽) ⊆ 𝐴
46 cnvss 5327 . . . . 5 ((𝐴𝐽) ⊆ 𝐴(𝐴𝐽) ⊆ 𝐴)
47 imass1 5535 . . . . 5 ((𝐴𝐽) ⊆ 𝐴 → ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0})))
4845, 46, 47mp2b 10 . . . 4 ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))
49 ssfi 8221 . . . 4 (((𝐴 “ (V ∖ {0})) ∈ Fin ∧ ((𝐴𝐽) “ (V ∖ {0})) ⊆ (𝐴 “ (V ∖ {0}))) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
5044, 48, 49sylancl 695 . . 3 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (V ∖ {0})) ∈ Fin)
51 cnvco 5340 . . . . . 6 (bits ∘ (𝐴𝐽)) = ((𝐴𝐽) ∘ bits)
5251imaeq1i 5498 . . . . 5 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = (((𝐴𝐽) ∘ bits) “ (V ∖ {∅}))
53 imaco 5678 . . . . 5 (((𝐴𝐽) ∘ bits) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
5452, 53eqtri 2673 . . . 4 ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) = ((𝐴𝐽) “ (bits “ (V ∖ {∅})))
55 ffun 6086 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Fun 𝐴)
56 funres 5967 . . . . . 6 (Fun 𝐴 → Fun (𝐴𝐽))
5719, 55, 563syl 18 . . . . 5 (𝐴 ∈ (𝑇𝑅) → Fun (𝐴𝐽))
58 ssv 3658 . . . . . . 7 (bits “ V) ⊆ V
59 ssdif 3778 . . . . . . 7 ((bits “ V) ⊆ V → ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅})))
6058, 59ax-mp 5 . . . . . 6 ((bits “ V) ∖ (bits “ {∅})) ⊆ (V ∖ (bits “ {∅}))
61 bitsf 15196 . . . . . . 7 bits:ℤ⟶𝒫 ℕ0
62 ffun 6086 . . . . . . 7 (bits:ℤ⟶𝒫 ℕ0 → Fun bits)
63 difpreima 6383 . . . . . . 7 (Fun bits → (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅})))
6461, 62, 63mp2b 10 . . . . . 6 (bits “ (V ∖ {∅})) = ((bits “ V) ∖ (bits “ {∅}))
65 bitsf1 15215 . . . . . . . . 9 bits:ℤ–1-1→𝒫 ℕ0
66 0z 11426 . . . . . . . . . 10 0 ∈ ℤ
67 snssi 4371 . . . . . . . . . 10 (0 ∈ ℤ → {0} ⊆ ℤ)
6866, 67ax-mp 5 . . . . . . . . 9 {0} ⊆ ℤ
69 f1imacnv 6191 . . . . . . . . 9 ((bits:ℤ–1-1→𝒫 ℕ0 ∧ {0} ⊆ ℤ) → (bits “ (bits “ {0})) = {0})
7065, 68, 69mp2an 708 . . . . . . . 8 (bits “ (bits “ {0})) = {0}
71 ffn 6083 . . . . . . . . . . . 12 (bits:ℤ⟶𝒫 ℕ0 → bits Fn ℤ)
7261, 71ax-mp 5 . . . . . . . . . . 11 bits Fn ℤ
73 fnsnfv 6297 . . . . . . . . . . 11 ((bits Fn ℤ ∧ 0 ∈ ℤ) → {(bits‘0)} = (bits “ {0}))
7472, 66, 73mp2an 708 . . . . . . . . . 10 {(bits‘0)} = (bits “ {0})
75 0bits 15208 . . . . . . . . . . 11 (bits‘0) = ∅
7675sneqi 4221 . . . . . . . . . 10 {(bits‘0)} = {∅}
7774, 76eqtr3i 2675 . . . . . . . . 9 (bits “ {0}) = {∅}
7877imaeq2i 5499 . . . . . . . 8 (bits “ (bits “ {0})) = (bits “ {∅})
7970, 78eqtr3i 2675 . . . . . . 7 {0} = (bits “ {∅})
8079difeq2i 3758 . . . . . 6 (V ∖ {0}) = (V ∖ (bits “ {∅}))
8160, 64, 803sstr4i 3677 . . . . 5 (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})
82 sspreima 29575 . . . . 5 ((Fun (𝐴𝐽) ∧ (bits “ (V ∖ {∅})) ⊆ (V ∖ {0})) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8357, 81, 82sylancl 695 . . . 4 (𝐴 ∈ (𝑇𝑅) → ((𝐴𝐽) “ (bits “ (V ∖ {∅}))) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
8454, 83syl5eqss 3682 . . 3 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0})))
85 ssfi 8221 . . 3 ((((𝐴𝐽) “ (V ∖ {0})) ∈ Fin ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ⊆ ((𝐴𝐽) “ (V ∖ {0}))) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
8650, 84, 85syl2anc 694 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)
87 oveq1 6697 . . . . 5 (𝑟 = (bits ∘ (𝐴𝐽)) → (𝑟 supp ∅) = ((bits ∘ (𝐴𝐽)) supp ∅))
8887eleq1d 2715 . . . 4 (𝑟 = (bits ∘ (𝐴𝐽)) → ((𝑟 supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
8988, 9elrab2 3399 . . 3 ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin))
90 zex 11424 . . . . . 6 ℤ ∈ V
91 fex 6530 . . . . . 6 ((bits:ℤ⟶𝒫 ℕ0 ∧ ℤ ∈ V) → bits ∈ V)
9261, 90, 91mp2an 708 . . . . 5 bits ∈ V
93 resexg 5477 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝐴𝐽) ∈ V)
94 coexg 7159 . . . . 5 ((bits ∈ V ∧ (𝐴𝐽) ∈ V) → (bits ∘ (𝐴𝐽)) ∈ V)
9592, 93, 94sylancr 696 . . . 4 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ V)
96 0ex 4823 . . . . . . 7 ∅ ∈ V
97 suppimacnv 7351 . . . . . . 7 (((bits ∘ (𝐴𝐽)) ∈ V ∧ ∅ ∈ V) → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9896, 97mpan2 707 . . . . . 6 ((bits ∘ (𝐴𝐽)) ∈ V → ((bits ∘ (𝐴𝐽)) supp ∅) = ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})))
9998eleq1d 2715 . . . . 5 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin ↔ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin))
10099anbi2d 740 . . . 4 ((bits ∘ (𝐴𝐽)) ∈ V → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10195, 100syl 17 . . 3 (𝐴 ∈ (𝑇𝑅) → (((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∧ ((bits ∘ (𝐴𝐽)) supp ∅) ∈ Fin) ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10289, 101syl5bb 272 . 2 (𝐴 ∈ (𝑇𝑅) → ((bits ∘ (𝐴𝐽)) ∈ 𝐻 ↔ ((bits ∘ (𝐴𝐽)) ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∧ ((bits ∘ (𝐴𝐽)) “ (V ∖ {∅})) ∈ Fin)))
10330, 86, 102mpbir2and 977 1 (𝐴 ∈ (𝑇𝑅) → (bits ∘ (𝐴𝐽)) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  {cab 2637  wral 2941  {crab 2945  Vcvv 3231  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  {copab 4745  cmpt 4762  ccnv 5142  cres 5145  cima 5146  ccom 5147  Fun wfun 5920   Fn wfn 5921  wf 5922  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cmpt2 6692   supp csupp 7340  𝑚 cmap 7899  Fincfn 7997  0cc0 9974  1c1 9975   · cmul 9979  cle 10113  cn 11058  2c2 11108  0cn0 11330  cz 11415  cexp 12900  Σcsu 14460  cdvds 15027  bitscbits 15188  𝟭cind 30200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-dvds 15028  df-bits 15191
This theorem is referenced by:  eulerpartlemgvv  30566  eulerpartlemgf  30569
  Copyright terms: Public domain W3C validator