Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgu Structured version   Visualization version   GIF version

Theorem eulerpartlemgu 30748
 Description: Lemma for eulerpart 30753: Rewriting the 𝑈 set for an odd partition Note that interestingly, this proof reuses marypha2lem2 8507. (Contributed by Thierry Arnoux, 10-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
eulerpartlemgh.1 𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))
Assertion
Ref Expression
eulerpartlemgu (𝐴 ∈ (𝑇𝑅) → 𝑈 = {⟨𝑡, 𝑛⟩ ∣ (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)‘𝑡))})
Distinct variable groups:   𝑧,𝑡   𝑓,𝑔,𝑘,𝑛,𝑡,𝐴   𝑓,𝐽,𝑛,𝑡   𝑓,𝑁,𝑘,𝑛,𝑡   𝑛,𝑂,𝑡   𝑃,𝑔,𝑘   𝑅,𝑓,𝑘,𝑛,𝑡   𝑇,𝑛,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑜,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑡,𝑓,𝑛,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑜,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑜,𝑟)   𝑈(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑜,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑜,𝑟)

Proof of Theorem eulerpartlemgu
StepHypRef Expression
1 eulerpartlemgh.1 . 2 𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))
2 eqid 2760 . . . 4 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × ((bits ∘ 𝐴)‘𝑡)) = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × ((bits ∘ 𝐴)‘𝑡))
32marypha2lem2 8507 . . 3 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × ((bits ∘ 𝐴)‘𝑡)) = {⟨𝑡, 𝑛⟩ ∣ (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)‘𝑡))}
4 eulerpart.p . . . . . . . . . . 11 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . . . . . . . 11 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . . . . . . . 11 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
7 eulerpart.j . . . . . . . . . . 11 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
8 eulerpart.f . . . . . . . . . . 11 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 eulerpart.h . . . . . . . . . . 11 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
10 eulerpart.m . . . . . . . . . . 11 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
11 eulerpart.r . . . . . . . . . . 11 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
12 eulerpart.t . . . . . . . . . . 11 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
134, 5, 6, 7, 8, 9, 10, 11, 12eulerpartlemt0 30740 . . . . . . . . . 10 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
1413simp1bi 1140 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0𝑚 ℕ))
15 elmapi 8045 . . . . . . . . 9 (𝐴 ∈ (ℕ0𝑚 ℕ) → 𝐴:ℕ⟶ℕ0)
1614, 15syl 17 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
1716adantr 472 . . . . . . 7 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)) → 𝐴:ℕ⟶ℕ0)
18 ffun 6209 . . . . . . 7 (𝐴:ℕ⟶ℕ0 → Fun 𝐴)
1917, 18syl 17 . . . . . 6 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)) → Fun 𝐴)
20 inss1 3976 . . . . . . . . 9 ((𝐴 “ ℕ) ∩ 𝐽) ⊆ (𝐴 “ ℕ)
21 cnvimass 5643 . . . . . . . . . 10 (𝐴 “ ℕ) ⊆ dom 𝐴
22 fdm 6212 . . . . . . . . . . 11 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
2316, 22syl 17 . . . . . . . . . 10 (𝐴 ∈ (𝑇𝑅) → dom 𝐴 = ℕ)
2421, 23syl5sseq 3794 . . . . . . . . 9 (𝐴 ∈ (𝑇𝑅) → (𝐴 “ ℕ) ⊆ ℕ)
2520, 24syl5ss 3755 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → ((𝐴 “ ℕ) ∩ 𝐽) ⊆ ℕ)
2625sselda 3744 . . . . . . 7 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)) → 𝑡 ∈ ℕ)
2723eleq2d 2825 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → (𝑡 ∈ dom 𝐴𝑡 ∈ ℕ))
2827adantr 472 . . . . . . 7 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)) → (𝑡 ∈ dom 𝐴𝑡 ∈ ℕ))
2926, 28mpbird 247 . . . . . 6 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)) → 𝑡 ∈ dom 𝐴)
30 fvco 6436 . . . . . 6 ((Fun 𝐴𝑡 ∈ dom 𝐴) → ((bits ∘ 𝐴)‘𝑡) = (bits‘(𝐴𝑡)))
3119, 29, 30syl2anc 696 . . . . 5 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)) → ((bits ∘ 𝐴)‘𝑡) = (bits‘(𝐴𝑡)))
3231xpeq2d 5296 . . . 4 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)) → ({𝑡} × ((bits ∘ 𝐴)‘𝑡)) = ({𝑡} × (bits‘(𝐴𝑡))))
3332iuneq2dv 4694 . . 3 (𝐴 ∈ (𝑇𝑅) → 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × ((bits ∘ 𝐴)‘𝑡)) = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))))
343, 33syl5reqr 2809 . 2 (𝐴 ∈ (𝑇𝑅) → 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))) = {⟨𝑡, 𝑛⟩ ∣ (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)‘𝑡))})
351, 34syl5eq 2806 1 (𝐴 ∈ (𝑇𝑅) → 𝑈 = {⟨𝑡, 𝑛⟩ ∣ (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ 𝑛 ∈ ((bits ∘ 𝐴)‘𝑡))})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {cab 2746  ∀wral 3050  {crab 3054   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  𝒫 cpw 4302  {csn 4321  ∪ ciun 4672   class class class wbr 4804  {copab 4864   ↦ cmpt 4881   × cxp 5264  ◡ccnv 5265  dom cdm 5266   ↾ cres 5268   “ cima 5269   ∘ ccom 5270  Fun wfun 6043  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815   supp csupp 7463   ↑𝑚 cmap 8023  Fincfn 8121  1c1 10129   · cmul 10133   ≤ cle 10267  ℕcn 11212  2c2 11262  ℕ0cn0 11484  ↑cexp 13054  Σcsu 14615   ∥ cdvds 15182  bitscbits 15343  𝟭cind 30381 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-map 8025 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator