Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgh Structured version   Visualization version   GIF version

Theorem eulerpartlemgh 30780
Description: Lemma for eulerpart 30784: The 𝐹 function is a bijection on the 𝑈 subsets. (Contributed by Thierry Arnoux, 15-Aug-2018.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
eulerpartlemgh.1 𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))
Assertion
Ref Expression
eulerpartlemgh (𝐴 ∈ (𝑇𝑅) → (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚})
Distinct variable groups:   𝑧,𝑡   𝑓,𝑔,𝑘,𝑛,𝑡,𝐴   𝑓,𝐽,𝑛,𝑡   𝑓,𝑁,𝑘,𝑛,𝑡   𝑛,𝑂,𝑡   𝑃,𝑔,𝑘   𝑅,𝑓,𝑘,𝑛,𝑡   𝑇,𝑛,𝑡   𝑥,𝑡,𝑦,𝑧   𝑓,𝑚,𝑥,𝑔,𝑘,𝑛,𝑡,𝐴   𝑛,𝐹,𝑡,𝑥   𝑦,𝑓,𝑛   𝑥,𝐽,𝑦   𝑡,𝑃
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑜,𝑟)   𝐷(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑚,𝑛,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑔,𝑚,𝑜,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑜,𝑟)   𝑈(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝐹(𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑜,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝐽(𝑧,𝑔,𝑘,𝑚,𝑜,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑡,𝑓,𝑔,𝑘,𝑚,𝑛,𝑜,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑚,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑚,𝑜,𝑟)

Proof of Theorem eulerpartlemgh
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 eulerpart.j . . . . 5 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 eulerpart.f . . . . 5 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
31, 2oddpwdc 30756 . . . 4 𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ
4 f1of1 6277 . . . 4 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹:(𝐽 × ℕ0)–1-1→ℕ)
53, 4ax-mp 5 . . 3 𝐹:(𝐽 × ℕ0)–1-1→ℕ
6 eulerpartlemgh.1 . . . 4 𝑈 = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))
7 iunss 4695 . . . . 5 ( 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0) ↔ ∀𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
8 inss2 3982 . . . . . . . 8 ((𝐴 “ ℕ) ∩ 𝐽) ⊆ 𝐽
98sseli 3748 . . . . . . 7 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → 𝑡𝐽)
109snssd 4475 . . . . . 6 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → {𝑡} ⊆ 𝐽)
11 bitsss 15356 . . . . . 6 (bits‘(𝐴𝑡)) ⊆ ℕ0
12 xpss12 5264 . . . . . 6 (({𝑡} ⊆ 𝐽 ∧ (bits‘(𝐴𝑡)) ⊆ ℕ0) → ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
1310, 11, 12sylancl 574 . . . . 5 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
147, 13mprgbir 3076 . . . 4 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0)
156, 14eqsstri 3784 . . 3 𝑈 ⊆ (𝐽 × ℕ0)
16 f1ores 6292 . . 3 ((𝐹:(𝐽 × ℕ0)–1-1→ℕ ∧ 𝑈 ⊆ (𝐽 × ℕ0)) → (𝐹𝑈):𝑈1-1-onto→(𝐹𝑈))
175, 15, 16mp2an 672 . 2 (𝐹𝑈):𝑈1-1-onto→(𝐹𝑈)
18 simpr 471 . . . . . . . . . . 11 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) ∧ ((2↑𝑛) · 𝑡) = 𝑝) → ((2↑𝑛) · 𝑡) = 𝑝)
19 2nn 11387 . . . . . . . . . . . . . . 15 2 ∈ ℕ
2019a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → 2 ∈ ℕ)
2111sseli 3748 . . . . . . . . . . . . . . 15 (𝑛 ∈ (bits‘(𝐴𝑡)) → 𝑛 ∈ ℕ0)
2221adantl 467 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → 𝑛 ∈ ℕ0)
2320, 22nnexpcld 13237 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → (2↑𝑛) ∈ ℕ)
24 simplr 752 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → 𝑡 ∈ ℕ)
2523, 24nnmulcld 11270 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) → ((2↑𝑛) · 𝑡) ∈ ℕ)
2625adantr 466 . . . . . . . . . . 11 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) ∧ ((2↑𝑛) · 𝑡) = 𝑝) → ((2↑𝑛) · 𝑡) ∈ ℕ)
2718, 26eqeltrrd 2851 . . . . . . . . . 10 ((((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑛 ∈ (bits‘(𝐴𝑡))) ∧ ((2↑𝑛) · 𝑡) = 𝑝) → 𝑝 ∈ ℕ)
2827exp31 406 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (𝑛 ∈ (bits‘(𝐴𝑡)) → (((2↑𝑛) · 𝑡) = 𝑝𝑝 ∈ ℕ)))
2928rexlimdv 3178 . . . . . . . 8 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑝 ∈ ℕ))
3029rexlimdva 3179 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑝 ∈ ℕ))
3130pm4.71rd 552 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ (𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)))
32 rex0 4085 . . . . . . . . . . . . . . 15 ¬ ∃𝑛 ∈ ∅ ((2↑𝑛) · 𝑡) = 𝑝
33 simplr 752 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → 𝑡 ∈ ℕ)
34 simpr 471 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ 𝑡 ∈ (𝐴 “ ℕ))
35 eulerpart.p . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
36 eulerpart.o . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
37 eulerpart.d . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
38 eulerpart.h . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
39 eulerpart.m . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
40 eulerpart.r . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
41 eulerpart.t . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑇 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
4235, 36, 37, 1, 2, 38, 39, 40, 41eulerpartlemt0 30771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ∈ (𝑇𝑅) ↔ (𝐴 ∈ (ℕ0𝑚 ℕ) ∧ (𝐴 “ ℕ) ∈ Fin ∧ (𝐴 “ ℕ) ⊆ 𝐽))
4342simp1bi 1139 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ (𝑇𝑅) → 𝐴 ∈ (ℕ0𝑚 ℕ))
44 elmapi 8031 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ (ℕ0𝑚 ℕ) → 𝐴:ℕ⟶ℕ0)
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ (𝑇𝑅) → 𝐴:ℕ⟶ℕ0)
4645ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
47 ffn 6185 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
48 elpreima 6480 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 Fn ℕ → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
4946, 47, 483syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝑡 ∈ (𝐴 “ ℕ) ↔ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ)))
5034, 49mtbid 313 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ))
51 imnan 386 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℕ → ¬ (𝐴𝑡) ∈ ℕ) ↔ ¬ (𝑡 ∈ ℕ ∧ (𝐴𝑡) ∈ ℕ))
5250, 51sylibr 224 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝑡 ∈ ℕ → ¬ (𝐴𝑡) ∈ ℕ))
5333, 52mpd 15 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ (𝐴𝑡) ∈ ℕ)
5446, 33ffvelrnd 6503 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝐴𝑡) ∈ ℕ0)
55 elnn0 11496 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑡) ∈ ℕ0 ↔ ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
5654, 55sylib 208 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0))
57 orel1 875 . . . . . . . . . . . . . . . . . . 19 (¬ (𝐴𝑡) ∈ ℕ → (((𝐴𝑡) ∈ ℕ ∨ (𝐴𝑡) = 0) → (𝐴𝑡) = 0))
5853, 56, 57sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (𝐴𝑡) = 0)
5958fveq2d 6336 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (bits‘(𝐴𝑡)) = (bits‘0))
60 0bits 15369 . . . . . . . . . . . . . . . . 17 (bits‘0) = ∅
6159, 60syl6eq 2821 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (bits‘(𝐴𝑡)) = ∅)
6261rexeqdv 3294 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ ∃𝑛 ∈ ∅ ((2↑𝑛) · 𝑡) = 𝑝))
6332, 62mtbiri 316 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (𝐴 “ ℕ)) → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
6463ex 397 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (¬ 𝑡 ∈ (𝐴 “ ℕ) → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
6564con4d 115 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑡 ∈ (𝐴 “ ℕ)))
6665impr 442 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → 𝑡 ∈ (𝐴 “ ℕ))
67 eldif 3733 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (ℕ ∖ 𝐽) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽))
6835, 36, 37, 1, 2, 38, 39, 40, 41eulerpartlemf 30772 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ (ℕ ∖ 𝐽)) → (𝐴𝑡) = 0)
6967, 68sylan2br 582 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽)) → (𝐴𝑡) = 0)
7069anassrs 458 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (𝐴𝑡) = 0)
7170fveq2d 6336 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (bits‘(𝐴𝑡)) = (bits‘0))
7271, 60syl6eq 2821 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (bits‘(𝐴𝑡)) = ∅)
7372rexeqdv 3294 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ ∃𝑛 ∈ ∅ ((2↑𝑛) · 𝑡) = 𝑝))
7432, 73mtbiri 316 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡𝐽) → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
7574ex 397 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (¬ 𝑡𝐽 → ¬ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
7675con4d 115 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑇𝑅) ∧ 𝑡 ∈ ℕ) → (∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝𝑡𝐽))
7776impr 442 . . . . . . . . . . 11 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → 𝑡𝐽)
7866, 77elind 3949 . . . . . . . . . 10 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽))
79 simprr 756 . . . . . . . . . 10 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
8078, 79jca 501 . . . . . . . . 9 ((𝐴 ∈ (𝑇𝑅) ∧ (𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)) → (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8180ex 397 . . . . . . . 8 (𝐴 ∈ (𝑇𝑅) → ((𝑡 ∈ ℕ ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝) → (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) ∧ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)))
8281reximdv2 3162 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 → ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
83 ssrab2 3836 . . . . . . . . . 10 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ⊆ ℕ
841, 83eqsstri 3784 . . . . . . . . 9 𝐽 ⊆ ℕ
858, 84sstri 3761 . . . . . . . 8 ((𝐴 “ ℕ) ∩ 𝐽) ⊆ ℕ
86 ssrexv 3816 . . . . . . . 8 (((𝐴 “ ℕ) ∩ 𝐽) ⊆ ℕ → (∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8785, 86mp1i 13 . . . . . . 7 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 → ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8882, 87impbid 202 . . . . . 6 (𝐴 ∈ (𝑇𝑅) → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝 ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
8931, 88bitr3d 270 . . . . 5 (𝐴 ∈ (𝑇𝑅) → ((𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
90 eqeq2 2782 . . . . . . . 8 (𝑚 = 𝑝 → (((2↑𝑛) · 𝑡) = 𝑚 ↔ ((2↑𝑛) · 𝑡) = 𝑝))
91902rexbidv 3205 . . . . . . 7 (𝑚 = 𝑝 → (∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚 ↔ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
9291elrab 3515 . . . . . 6 (𝑝 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚} ↔ (𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
9392a1i 11 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑝 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚} ↔ (𝑝 ∈ ℕ ∧ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)))
946imaeq2i 5605 . . . . . . . . 9 (𝐹𝑈) = (𝐹 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡))))
95 imaiun 6646 . . . . . . . . 9 (𝐹 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)({𝑡} × (bits‘(𝐴𝑡)))) = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡))))
9694, 95eqtri 2793 . . . . . . . 8 (𝐹𝑈) = 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡))))
9796eleq2i 2842 . . . . . . 7 (𝑝 ∈ (𝐹𝑈) ↔ 𝑝 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))))
98 eliun 4658 . . . . . . 7 (𝑝 𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)(𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))))
99 f1ofn 6279 . . . . . . . . . . . . 13 (𝐹:(𝐽 × ℕ0)–1-1-onto→ℕ → 𝐹 Fn (𝐽 × ℕ0))
1003, 99ax-mp 5 . . . . . . . . . . . 12 𝐹 Fn (𝐽 × ℕ0)
101 snssi 4474 . . . . . . . . . . . . 13 (𝑡𝐽 → {𝑡} ⊆ 𝐽)
102101, 11, 12sylancl 574 . . . . . . . . . . . 12 (𝑡𝐽 → ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0))
103 ovelimab 6959 . . . . . . . . . . . 12 ((𝐹 Fn (𝐽 × ℕ0) ∧ ({𝑡} × (bits‘(𝐴𝑡))) ⊆ (𝐽 × ℕ0)) → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑥 ∈ {𝑡}∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛)))
104100, 102, 103sylancr 575 . . . . . . . . . . 11 (𝑡𝐽 → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑥 ∈ {𝑡}∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛)))
105 vex 3354 . . . . . . . . . . . 12 𝑡 ∈ V
106 oveq1 6800 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (𝑥𝐹𝑛) = (𝑡𝐹𝑛))
107106eqeq2d 2781 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → (𝑝 = (𝑥𝐹𝑛) ↔ 𝑝 = (𝑡𝐹𝑛)))
108107rexbidv 3200 . . . . . . . . . . . 12 (𝑥 = 𝑡 → (∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛)))
109105, 108rexsn 4361 . . . . . . . . . . 11 (∃𝑥 ∈ {𝑡}∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑥𝐹𝑛) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛))
110104, 109syl6bb 276 . . . . . . . . . 10 (𝑡𝐽 → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛)))
111 df-ov 6796 . . . . . . . . . . . . . . 15 (𝑡𝐹𝑛) = (𝐹‘⟨𝑡, 𝑛⟩)
112111eqeq1i 2776 . . . . . . . . . . . . . 14 ((𝑡𝐹𝑛) = 𝑝 ↔ (𝐹‘⟨𝑡, 𝑛⟩) = 𝑝)
113 eqcom 2778 . . . . . . . . . . . . . 14 ((𝑡𝐹𝑛) = 𝑝𝑝 = (𝑡𝐹𝑛))
114112, 113bitr3i 266 . . . . . . . . . . . . 13 ((𝐹‘⟨𝑡, 𝑛⟩) = 𝑝𝑝 = (𝑡𝐹𝑛))
115 opelxpi 5288 . . . . . . . . . . . . . . 15 ((𝑡𝐽𝑛 ∈ ℕ0) → ⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0))
1161, 2oddpwdcv 30757 . . . . . . . . . . . . . . . 16 (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑(2nd ‘⟨𝑡, 𝑛⟩)) · (1st ‘⟨𝑡, 𝑛⟩)))
117 vex 3354 . . . . . . . . . . . . . . . . . . 19 𝑛 ∈ V
118105, 117op2nd 7324 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨𝑡, 𝑛⟩) = 𝑛
119118oveq2i 6804 . . . . . . . . . . . . . . . . 17 (2↑(2nd ‘⟨𝑡, 𝑛⟩)) = (2↑𝑛)
120105, 117op1st 7323 . . . . . . . . . . . . . . . . 17 (1st ‘⟨𝑡, 𝑛⟩) = 𝑡
121119, 120oveq12i 6805 . . . . . . . . . . . . . . . 16 ((2↑(2nd ‘⟨𝑡, 𝑛⟩)) · (1st ‘⟨𝑡, 𝑛⟩)) = ((2↑𝑛) · 𝑡)
122116, 121syl6eq 2821 . . . . . . . . . . . . . . 15 (⟨𝑡, 𝑛⟩ ∈ (𝐽 × ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡))
123115, 122syl 17 . . . . . . . . . . . . . 14 ((𝑡𝐽𝑛 ∈ ℕ0) → (𝐹‘⟨𝑡, 𝑛⟩) = ((2↑𝑛) · 𝑡))
124123eqeq1d 2773 . . . . . . . . . . . . 13 ((𝑡𝐽𝑛 ∈ ℕ0) → ((𝐹‘⟨𝑡, 𝑛⟩) = 𝑝 ↔ ((2↑𝑛) · 𝑡) = 𝑝))
125114, 124syl5bbr 274 . . . . . . . . . . . 12 ((𝑡𝐽𝑛 ∈ ℕ0) → (𝑝 = (𝑡𝐹𝑛) ↔ ((2↑𝑛) · 𝑡) = 𝑝))
12621, 125sylan2 580 . . . . . . . . . . 11 ((𝑡𝐽𝑛 ∈ (bits‘(𝐴𝑡))) → (𝑝 = (𝑡𝐹𝑛) ↔ ((2↑𝑛) · 𝑡) = 𝑝))
127126rexbidva 3197 . . . . . . . . . 10 (𝑡𝐽 → (∃𝑛 ∈ (bits‘(𝐴𝑡))𝑝 = (𝑡𝐹𝑛) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
128110, 127bitrd 268 . . . . . . . . 9 (𝑡𝐽 → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
1299, 128syl 17 . . . . . . . 8 (𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽) → (𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
130129rexbiia 3188 . . . . . . 7 (∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)𝑝 ∈ (𝐹 “ ({𝑡} × (bits‘(𝐴𝑡)))) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
13197, 98, 1303bitri 286 . . . . . 6 (𝑝 ∈ (𝐹𝑈) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝)
132131a1i 11 . . . . 5 (𝐴 ∈ (𝑇𝑅) → (𝑝 ∈ (𝐹𝑈) ↔ ∃𝑡 ∈ ((𝐴 “ ℕ) ∩ 𝐽)∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑝))
13389, 93, 1323bitr4rd 301 . . . 4 (𝐴 ∈ (𝑇𝑅) → (𝑝 ∈ (𝐹𝑈) ↔ 𝑝 ∈ {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚}))
134133eqrdv 2769 . . 3 (𝐴 ∈ (𝑇𝑅) → (𝐹𝑈) = {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚})
135 f1oeq3 6270 . . 3 ((𝐹𝑈) = {𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚} → ((𝐹𝑈):𝑈1-1-onto→(𝐹𝑈) ↔ (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚}))
136134, 135syl 17 . 2 (𝐴 ∈ (𝑇𝑅) → ((𝐹𝑈):𝑈1-1-onto→(𝐹𝑈) ↔ (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚}))
13717, 136mpbii 223 1 (𝐴 ∈ (𝑇𝑅) → (𝐹𝑈):𝑈1-1-onto→{𝑚 ∈ ℕ ∣ ∃𝑡 ∈ ℕ ∃𝑛 ∈ (bits‘(𝐴𝑡))((2↑𝑛) · 𝑡) = 𝑚})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  {cab 2757  wral 3061  wrex 3062  {crab 3065  cdif 3720  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  {csn 4316  cop 4322   ciun 4654   class class class wbr 4786  {copab 4846  cmpt 4863   × cxp 5247  ccnv 5248  cres 5251  cima 5252  ccom 5253   Fn wfn 6026  wf 6027  1-1wf1 6028  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  cmpt2 6795  1st c1st 7313  2nd c2nd 7314   supp csupp 7446  𝑚 cmap 8009  Fincfn 8109  0cc0 10138  1c1 10139   · cmul 10143  cle 10277  cn 11222  2c2 11272  0cn0 11494  cexp 13067  Σcsu 14624  cdvds 15189  bitscbits 15349  𝟭cind 30412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-dvds 15190  df-bits 15352
This theorem is referenced by:  eulerpartlemgs2  30782
  Copyright terms: Public domain W3C validator