![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemelr | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 30753. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
Ref | Expression |
---|---|
eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
Ref | Expression |
---|---|
eulerpartlemelr | ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3976 | . . . 4 ⊢ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ⊆ (ℕ0 ↑𝑚 ℕ) | |
2 | 1 | sseli 3740 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0 ↑𝑚 ℕ)) |
3 | elmapi 8045 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑𝑚 ℕ) → 𝐴:ℕ⟶ℕ0) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
5 | inss2 3977 | . . . 4 ⊢ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) ⊆ 𝑅 | |
6 | 5 | sseli 3740 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → 𝐴 ∈ 𝑅) |
7 | cnveq 5451 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
8 | 7 | imaeq1d 5623 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
9 | 8 | eleq1d 2824 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
10 | eulerpartlems.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
11 | 9, 10 | elab2g 3493 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴 ∈ 𝑅 ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
12 | 6, 11 | mpbid 222 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ∈ Fin) |
13 | 4, 12 | jca 555 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑𝑚 ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 {cab 2746 ∩ cin 3714 ↦ cmpt 4881 ◡ccnv 5265 “ cima 5269 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↑𝑚 cmap 8023 Fincfn 8121 · cmul 10133 ℕcn 11212 ℕ0cn0 11484 Σcsu 14615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-map 8025 |
This theorem is referenced by: eulerpartlemsv2 30729 eulerpartlemsf 30730 eulerpartlems 30731 eulerpartlemsv3 30732 eulerpartlemgc 30733 |
Copyright terms: Public domain | W3C validator |