Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemb Structured version   Visualization version   GIF version

Theorem eulerpartlemb 30787
Description: Lemma for eulerpart 30801. The set of all partitions of 𝑁 is finite. (Contributed by Mario Carneiro, 26-Jan-2015.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
Assertion
Ref Expression
eulerpartlemb 𝑃 ∈ Fin
Distinct variable groups:   𝑓,𝑔,𝑘,𝑥,𝑦   𝑓,𝑁,𝑔,𝑥   𝑃,𝑔
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑦,𝑧,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlemb
StepHypRef Expression
1 fzfid 13002 . . . 4 (⊤ → (1...𝑁) ∈ Fin)
2 fzfi 13001 . . . . . 6 (0...𝑁) ∈ Fin
3 snfi 8215 . . . . . 6 {0} ∈ Fin
42, 3keepel 4304 . . . . 5 if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin
54a1i 11 . . . 4 ((⊤ ∧ 𝑥 ∈ ℕ) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin)
6 eldifn 3891 . . . . . 6 (𝑥 ∈ (ℕ ∖ (1...𝑁)) → ¬ 𝑥 ∈ (1...𝑁))
76adantl 468 . . . . 5 ((⊤ ∧ 𝑥 ∈ (ℕ ∖ (1...𝑁))) → ¬ 𝑥 ∈ (1...𝑁))
8 iffalse 4244 . . . . 5 𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0})
9 eqimss 3813 . . . . 5 (if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0} → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0})
107, 8, 93syl 18 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℕ ∖ (1...𝑁))) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ⊆ {0})
111, 5, 10ixpfi2 8441 . . 3 (⊤ → X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin)
1211trud 1644 . 2 X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin
13 eulerpart.p . . . . 5 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
1413eulerpartleme 30782 . . . 4 (𝑔𝑃 ↔ (𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁))
15 ffn 6196 . . . . . 6 (𝑔:ℕ⟶ℕ0𝑔 Fn ℕ)
16153ad2ant1 1154 . . . . 5 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑔 Fn ℕ)
17 ffvelrn 6517 . . . . . . . . . . . . 13 ((𝑔:ℕ⟶ℕ0𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℕ0)
18173ad2antl1 1227 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℕ0)
1918nn0red 11576 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ ℝ)
20 nnre 11250 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
2120adantl 468 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
2219, 21remulcld 10293 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ∈ ℝ)
23 cnvimass 5636 . . . . . . . . . . . . . . . . . 18 (𝑔 “ ℕ) ⊆ dom 𝑔
24 fdm 6204 . . . . . . . . . . . . . . . . . . 19 (𝑔:ℕ⟶ℕ0 → dom 𝑔 = ℕ)
2524adantr 467 . . . . . . . . . . . . . . . . . 18 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → dom 𝑔 = ℕ)
2623, 25syl5sseq 3809 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 “ ℕ) ⊆ ℕ)
2726sselda 3758 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
28 ffvelrn 6517 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:ℕ⟶ℕ0𝑘 ∈ ℕ) → (𝑔𝑘) ∈ ℕ0)
2928adantlr 695 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ ℕ) → (𝑔𝑘) ∈ ℕ0)
3027, 29syldan 580 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → (𝑔𝑘) ∈ ℕ0)
3127nnnn0d 11575 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ0)
3230, 31nn0mulcld 11580 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
3332nn0cnd 11577 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℂ)
34 simpl 469 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → 𝑔:ℕ⟶ℕ0)
35 nnex 11249 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ ∈ V
36 frnnn0supp 11573 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℕ ∈ V ∧ 𝑔:ℕ⟶ℕ0) → (𝑔 supp 0) = (𝑔 “ ℕ))
3735, 36mpan 671 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:ℕ⟶ℕ0 → (𝑔 supp 0) = (𝑔 “ ℕ))
3837adantr 467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) = (𝑔 “ ℕ))
39 eqimss 3813 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔 supp 0) = (𝑔 “ ℕ) → (𝑔 supp 0) ⊆ (𝑔 “ ℕ))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 supp 0) ⊆ (𝑔 “ ℕ))
4135a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ℕ ∈ V)
42 0nn0 11531 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℕ0
4342a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → 0 ∈ ℕ0)
4434, 40, 41, 43suppssr 7499 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → (𝑔𝑘) = 0)
4544oveq1d 6827 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑘) · 𝑘) = (0 · 𝑘))
46 eldifi 3890 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
4746adantl 468 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → 𝑘 ∈ ℕ)
48 nncn 11251 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
49 mul02 10437 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℂ → (0 · 𝑘) = 0)
5047, 48, 493syl 18 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → (0 · 𝑘) = 0)
5145, 50eqtrd 2808 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑘) · 𝑘) = 0)
52 nnuz 11947 . . . . . . . . . . . . . . . . . . 19 ℕ = (ℤ‘1)
5352eqimssi 3815 . . . . . . . . . . . . . . . . . 18 ℕ ⊆ (ℤ‘1)
5453a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ℕ ⊆ (ℤ‘1))
5526, 33, 51, 54sumss 14685 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
56 simpr 472 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (𝑔 “ ℕ) ∈ Fin)
5756, 32fsumnn0cl 14697 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) ∈ ℕ0)
5855, 57eqeltrrd 2854 . . . . . . . . . . . . . . 15 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0)
59 eleq1 2841 . . . . . . . . . . . . . . 15 𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁 → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0𝑁 ∈ ℕ0))
6058, 59syl5ibcom 236 . . . . . . . . . . . . . 14 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁𝑁 ∈ ℕ0))
61603impia 1136 . . . . . . . . . . . . 13 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑁 ∈ ℕ0)
6261adantr 467 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℕ0)
6362nn0red 11576 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℝ)
6418nn0ge0d 11578 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ (𝑔𝑥))
65 nnge1 11269 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 1 ≤ 𝑥)
6665adantl 468 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 1 ≤ 𝑥)
6719, 21, 64, 66lemulge11d 11184 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ≤ ((𝑔𝑥) · 𝑥))
6856adantr 467 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → (𝑔 “ ℕ) ∈ Fin)
6932nn0red 11576 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
7069adantlr 695 . . . . . . . . . . . . . . . . 17 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
7132nn0ge0d 11578 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
7271adantlr 695 . . . . . . . . . . . . . . . . 17 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
73 fveq2 6348 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥 → (𝑔𝑘) = (𝑔𝑥))
74 id 22 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑘 = 𝑥)
7573, 74oveq12d 6830 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 → ((𝑔𝑘) · 𝑘) = ((𝑔𝑥) · 𝑥))
76 simprr 778 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → 𝑥 ∈ (𝑔 “ ℕ))
7768, 70, 72, 75, 76fsumge1 14758 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
7877expr 445 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (𝑔 “ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘)))
79 eldif 3739 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ)) ↔ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ)))
8051ralrimiva 3118 . . . . . . . . . . . . . . . . . . 19 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) → ∀𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))((𝑔𝑘) · 𝑘) = 0)
8175eqeq1d 2776 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑥 → (((𝑔𝑘) · 𝑘) = 0 ↔ ((𝑔𝑥) · 𝑥) = 0))
8281rspccva 3464 . . . . . . . . . . . . . . . . . . 19 ((∀𝑘 ∈ (ℕ ∖ (𝑔 “ ℕ))((𝑔𝑘) · 𝑘) = 0 ∧ 𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8380, 82sylan 570 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ (ℕ ∖ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8479, 83sylan2br 583 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) = 0)
8556adantr 467 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (𝑔 “ ℕ) ∈ Fin)
8632adantlr 695 . . . . . . . . . . . . . . . . . . . 20 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
8786nn0red 11576 . . . . . . . . . . . . . . . . . . 19 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℝ)
8886nn0ge0d 11578 . . . . . . . . . . . . . . . . . . 19 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 0 ≤ ((𝑔𝑘) · 𝑘))
8985, 87, 88fsumge0 14756 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → 0 ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9089adantrr 697 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → 0 ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9184, 90eqbrtrd 4819 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ (𝑥 ∈ ℕ ∧ ¬ 𝑥 ∈ (𝑔 “ ℕ))) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9291expr 445 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (𝑔 “ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘)))
9378, 92pm2.61d 171 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
9455adantr 467 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
9593, 94breqtrd 4823 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
96953adantl3 1200 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
97 simpl3 1237 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁)
9896, 97breqtrd 4823 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) · 𝑥) ≤ 𝑁)
9919, 22, 63, 67, 98letrd 10417 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ≤ 𝑁)
100 nn0uz 11946 . . . . . . . . . . . 12 0 = (ℤ‘0)
10118, 100syl6eleq 2863 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ (ℤ‘0))
10262nn0zd 11704 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
103 elfz5 12563 . . . . . . . . . . 11 (((𝑔𝑥) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((𝑔𝑥) ∈ (0...𝑁) ↔ (𝑔𝑥) ≤ 𝑁))
104101, 102, 103syl2anc 574 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ (0...𝑁) ↔ (𝑔𝑥) ≤ 𝑁))
10599, 104mpbird 248 . . . . . . . . 9 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ (0...𝑁))
106105adantr 467 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ (0...𝑁))
107 iftrue 4241 . . . . . . . . 9 (𝑥 ∈ (1...𝑁) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁))
108107adantl 468 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = (0...𝑁))
109106, 108eleqtrrd 2856 . . . . . . 7 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
110 nnge1 11269 . . . . . . . . . . . . . 14 ((𝑔𝑥) ∈ ℕ → 1 ≤ (𝑔𝑥))
111 nnnn0 11523 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
112111adantl 468 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ0)
113112nn0ge0d 11578 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 0 ≤ 𝑥)
114 lemulge12 11109 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) ∧ (0 ≤ 𝑥 ∧ 1 ≤ (𝑔𝑥))) → 𝑥 ≤ ((𝑔𝑥) · 𝑥))
115114expr 445 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ ∧ (𝑔𝑥) ∈ ℝ) ∧ 0 ≤ 𝑥) → (1 ≤ (𝑔𝑥) → 𝑥 ≤ ((𝑔𝑥) · 𝑥)))
11621, 19, 113, 115syl21anc 855 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔𝑥) → 𝑥 ≤ ((𝑔𝑥) · 𝑥)))
117 letr 10354 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ ((𝑔𝑥) · 𝑥) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑥 ≤ ((𝑔𝑥) · 𝑥) ∧ ((𝑔𝑥) · 𝑥) ≤ 𝑁) → 𝑥𝑁))
11821, 22, 63, 117syl3anc 1480 . . . . . . . . . . . . . . . 16 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑥 ≤ ((𝑔𝑥) · 𝑥) ∧ ((𝑔𝑥) · 𝑥) ≤ 𝑁) → 𝑥𝑁))
11998, 118mpan2d 675 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ≤ ((𝑔𝑥) · 𝑥) → 𝑥𝑁))
120116, 119syld 47 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (1 ≤ (𝑔𝑥) → 𝑥𝑁))
121110, 120syl5 34 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ → 𝑥𝑁))
122 simpr 472 . . . . . . . . . . . . . . 15 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
123122, 52syl6eleq 2863 . . . . . . . . . . . . . 14 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ (ℤ‘1))
124 elfz5 12563 . . . . . . . . . . . . . 14 ((𝑥 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥𝑁))
125123, 102, 124syl2anc 574 . . . . . . . . . . . . 13 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑥 ∈ (1...𝑁) ↔ 𝑥𝑁))
126121, 125sylibrd 250 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ → 𝑥 ∈ (1...𝑁)))
127126con3d 149 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → ¬ (𝑔𝑥) ∈ ℕ))
128 elnn0 11518 . . . . . . . . . . . . 13 ((𝑔𝑥) ∈ ℕ0 ↔ ((𝑔𝑥) ∈ ℕ ∨ (𝑔𝑥) = 0))
12918, 128sylib 209 . . . . . . . . . . . 12 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → ((𝑔𝑥) ∈ ℕ ∨ (𝑔𝑥) = 0))
130129ord 880 . . . . . . . . . . 11 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ (𝑔𝑥) ∈ ℕ → (𝑔𝑥) = 0))
131127, 130syld 47 . . . . . . . . . 10 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (¬ 𝑥 ∈ (1...𝑁) → (𝑔𝑥) = 0))
132131imp 394 . . . . . . . . 9 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) = 0)
133 fvex 6359 . . . . . . . . . 10 (𝑔𝑥) ∈ V
134133elsn 4341 . . . . . . . . 9 ((𝑔𝑥) ∈ {0} ↔ (𝑔𝑥) = 0)
135132, 134sylibr 225 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ {0})
1368adantl 468 . . . . . . . 8 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) = {0})
137135, 136eleqtrrd 2856 . . . . . . 7 ((((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ∈ (1...𝑁)) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
138109, 137pm2.61dan 836 . . . . . 6 (((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) ∧ 𝑥 ∈ ℕ) → (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
139138ralrimiva 3118 . . . . 5 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → ∀𝑥 ∈ ℕ (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
140 vex 3358 . . . . . 6 𝑔 ∈ V
141140elixp 8090 . . . . 5 (𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ↔ (𝑔 Fn ℕ ∧ ∀𝑥 ∈ ℕ (𝑔𝑥) ∈ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})))
14216, 139, 141sylanbrc 573 . . . 4 ((𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = 𝑁) → 𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
14314, 142sylbi 208 . . 3 (𝑔𝑃𝑔X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}))
144143ssriv 3762 . 2 𝑃X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})
145 ssfi 8357 . 2 ((X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0}) ∈ Fin ∧ 𝑃X𝑥 ∈ ℕ if(𝑥 ∈ (1...𝑁), (0...𝑁), {0})) → 𝑃 ∈ Fin)
14612, 144, 145mp2an 673 1 𝑃 ∈ Fin
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383  wo 863  w3a 1098   = wceq 1634  wtru 1635  wcel 2148  wral 3064  {crab 3068  Vcvv 3355  cdif 3726  cin 3728  wss 3729  c0 4073  ifcif 4235  𝒫 cpw 4307  {csn 4326   class class class wbr 4797  {copab 4859  cmpt 4876  ccnv 5262  dom cdm 5263  cima 5266   Fn wfn 6037  wf 6038  cfv 6042  (class class class)co 6812  cmpt2 6814   supp csupp 7467  𝑚 cmap 8030  Xcixp 8083  Fincfn 8130  cc 10157  cr 10158  0cc0 10159  1c1 10160   · cmul 10164  cle 10298  cn 11243  2c2 11293  0cn0 11516  cz 11601  cuz 11910  ...cfz 12555  cexp 13089  Σcsu 14646  cdvds 15211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-inf2 8723  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-fal 1640  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-se 5223  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-isom 6051  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-supp 7468  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-2o 7735  df-oadd 7738  df-er 7917  df-map 8032  df-pm 8033  df-ixp 8084  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-sup 8525  df-oi 8592  df-card 8986  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-2 11302  df-3 11303  df-n0 11517  df-z 11602  df-uz 11911  df-rp 12053  df-ico 12405  df-fz 12556  df-fzo 12696  df-seq 13031  df-exp 13090  df-hash 13344  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-clim 14449  df-sum 14647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator