Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlem1 Structured version   Visualization version   GIF version

Theorem eulerpartlem1 30769
 Description: Lemma for eulerpart 30784. (Contributed by Thierry Arnoux, 27-Aug-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
Assertion
Ref Expression
eulerpartlem1 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐽   𝐻,𝑟
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛)   𝐽(𝑧,𝑓,𝑔,𝑘,𝑛)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑟)

Proof of Theorem eulerpartlem1
StepHypRef Expression
1 eulerpart.j . . . 4 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
2 nnex 11232 . . . 4 ℕ ∈ V
31, 2rabex2 4949 . . 3 𝐽 ∈ V
4 nn0ex 11505 . . 3 0 ∈ V
5 eqid 2771 . . 3 (𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) = (𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
6 eulerpart.h . . 3 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
73, 4, 5, 6fpwrelmapffs 29849 . 2 ((𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
8 eulerpart.m . . . 4 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
9 ssrab2 3836 . . . . . . 7 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽)
104pwex 4982 . . . . . . . 8 𝒫 ℕ0 ∈ V
11 inss1 3981 . . . . . . . 8 (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0
12 mapss 8058 . . . . . . . 8 ((𝒫 ℕ0 ∈ V ∧ (𝒫 ℕ0 ∩ Fin) ⊆ 𝒫 ℕ0) → ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ⊆ (𝒫 ℕ0𝑚 𝐽))
1310, 11, 12mp2an 672 . . . . . . 7 ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ⊆ (𝒫 ℕ0𝑚 𝐽)
149, 13sstri 3761 . . . . . 6 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 𝐽) ∣ (𝑟 supp ∅) ∈ Fin} ⊆ (𝒫 ℕ0𝑚 𝐽)
156, 14eqsstri 3784 . . . . 5 𝐻 ⊆ (𝒫 ℕ0𝑚 𝐽)
16 resmpt 5589 . . . . 5 (𝐻 ⊆ (𝒫 ℕ0𝑚 𝐽) → ((𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}))
1715, 16ax-mp 5 . . . 4 ((𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
188, 17eqtr4i 2796 . . 3 𝑀 = ((𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻)
19 f1oeq1 6269 . . 3 (𝑀 = ((𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻) → (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)))
2018, 19ax-mp 5 . 2 (𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin) ↔ ((𝑟 ∈ (𝒫 ℕ0𝑚 𝐽) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))}) ↾ 𝐻):𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin))
217, 20mpbir 221 1 𝑀:𝐻1-1-onto→(𝒫 (𝐽 × ℕ0) ∩ Fin)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∀wral 3061  {crab 3065  Vcvv 3351   ∩ cin 3722   ⊆ wss 3723  ∅c0 4063  𝒫 cpw 4298   class class class wbr 4787  {copab 4847   ↦ cmpt 4864   × cxp 5248  ◡ccnv 5249   ↾ cres 5252   “ cima 5253  –1-1-onto→wf1o 6029  ‘cfv 6030  (class class class)co 6796   ↦ cmpt2 6798   supp csupp 7450   ↑𝑚 cmap 8013  Fincfn 8113  1c1 10143   · cmul 10147   ≤ cle 10281  ℕcn 11226  2c2 11276  ℕ0cn0 11499  ↑cexp 13067  Σcsu 14624   ∥ cdvds 15189 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-ac2 9491  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-i2m1 10210  ax-1ne0 10211  ax-rrecex 10214  ax-cnre 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-fin 8117  df-card 8969  df-acn 8972  df-ac 9143  df-nn 11227  df-n0 11500 This theorem is referenced by:  eulerpartgbij  30774  eulerpartlemgvv  30778  eulerpartlemgf  30781
 Copyright terms: Public domain W3C validator