![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euimmo | Structured version Visualization version GIF version |
Description: Uniqueness implies "at most one" through reverse implication. (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
euimmo | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2636 | . 2 ⊢ (∃!𝑥𝜓 → ∃*𝑥𝜓) | |
2 | moim 2657 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1630 ∃!weu 2607 ∃*wmo 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-12 2196 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1854 df-nf 1859 df-eu 2611 df-mo 2612 |
This theorem is referenced by: euim 2661 2eumo 2683 moeq3 3524 reuss2 4050 |
Copyright terms: Public domain | W3C validator |