MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eucalglt Structured version   Visualization version   GIF version

Theorem eucalglt 15345
Description: The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalglt (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . . 9 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 15342 . . . . . . . 8 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32adantr 480 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
4 simpr 476 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) ≠ 0)
5 iftrue 4125 . . . . . . . . . . . . . 14 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
65eqeq2d 2661 . . . . . . . . . . . . 13 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) ↔ (𝐸𝑋) = 𝑋))
7 fveq2 6229 . . . . . . . . . . . . 13 ((𝐸𝑋) = 𝑋 → (2nd ‘(𝐸𝑋)) = (2nd𝑋))
86, 7syl6bi 243 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = (2nd𝑋)))
9 eqeq2 2662 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((2nd ‘(𝐸𝑋)) = (2nd𝑋) ↔ (2nd ‘(𝐸𝑋)) = 0))
108, 9sylibd 229 . . . . . . . . . . 11 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = 0))
113, 10syl5com 31 . . . . . . . . . 10 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) = 0 → (2nd ‘(𝐸𝑋)) = 0))
1211necon3ad 2836 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → ¬ (2nd𝑋) = 0))
134, 12mpd 15 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ¬ (2nd𝑋) = 0)
1413iffalsed 4130 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
153, 14eqtrd 2685 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
1615fveq2d 6233 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
17 fvex 6239 . . . . . 6 (2nd𝑋) ∈ V
18 fvex 6239 . . . . . 6 ( mod ‘𝑋) ∈ V
1917, 18op2nd 7219 . . . . 5 (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ( mod ‘𝑋)
2016, 19syl6eq 2701 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ( mod ‘𝑋))
21 1st2nd2 7249 . . . . . . 7 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2221adantr 480 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2322fveq2d 6233 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
24 df-ov 6693 . . . . 5 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
2523, 24syl6eqr 2703 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
2620, 25eqtrd 2685 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ((1st𝑋) mod (2nd𝑋)))
27 xp1st 7242 . . . . . 6 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
2827adantr 480 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℕ0)
2928nn0red 11390 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℝ)
30 xp2nd 7243 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
3130adantr 480 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ0)
32 elnn0 11332 . . . . . . . 8 ((2nd𝑋) ∈ ℕ0 ↔ ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3331, 32sylib 208 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) ∈ ℕ ∨ (2nd𝑋) = 0))
3433ord 391 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (¬ (2nd𝑋) ∈ ℕ → (2nd𝑋) = 0))
3513, 34mt3d 140 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ)
3635nnrpd 11908 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℝ+)
37 modlt 12719 . . . 4 (((1st𝑋) ∈ ℝ ∧ (2nd𝑋) ∈ ℝ+) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
3829, 36, 37syl2anc 694 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
3926, 38eqbrtrd 4707 . 2 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) < (2nd𝑋))
4039ex 449 1 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  ifcif 4119  cop 4216   class class class wbr 4685   × cxp 5141  cfv 5926  (class class class)co 6690  cmpt2 6692  1st c1st 7208  2nd c2nd 7209  cr 9973  0cc0 9974   < clt 10112  cn 11058  0cn0 11330  +crp 11870   mod cmo 12708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-mod 12709
This theorem is referenced by:  eucalgcvga  15346
  Copyright terms: Public domain W3C validator