![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eubii | Structured version Visualization version GIF version |
Description: Introduce uniqueness quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
eubii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
eubii | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eubii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | 2 | eubidv 2518 | . 2 ⊢ (⊤ → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)) |
4 | 3 | trud 1533 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ⊤wtru 1524 ∃!weu 2498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-tru 1526 df-ex 1745 df-nf 1750 df-eu 2502 |
This theorem is referenced by: cbveu 2534 2eu7 2588 2eu8 2589 reubiia 3157 cbvreu 3199 reuv 3252 euxfr2 3424 euxfr 3425 2reuswap 3443 2reu5lem1 3446 reuun2 3943 euelss 3947 zfnuleu 4819 reusv2lem4 4902 copsexg 4985 funeu2 5952 funcnv3 5997 fneu2 6034 tz6.12 6249 f1ompt 6422 fsn 6442 oeeu 7728 dfac5lem1 8984 dfac5lem5 8988 zmin 11822 climreu 14331 divalglem10 15172 divalgb 15174 txcn 21477 nbusgredgeu0 26314 adjeu 28876 2reuswap2 29455 bnj130 31070 bnj207 31077 bnj864 31118 bj-nuliota 33144 poimirlem25 33564 poimirlem27 33566 afveu 41554 tz6.12-1-afv 41575 |
Copyright terms: Public domain | W3C validator |