MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eubid Structured version   Visualization version   GIF version

Theorem eubid 2516
Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
Hypotheses
Ref Expression
eubid.1 𝑥𝜑
eubid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
eubid (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))

Proof of Theorem eubid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eubid.1 . . . 4 𝑥𝜑
2 eubid.2 . . . . 5 (𝜑 → (𝜓𝜒))
32bibi1d 332 . . . 4 (𝜑 → ((𝜓𝑥 = 𝑦) ↔ (𝜒𝑥 = 𝑦)))
41, 3albid 2128 . . 3 (𝜑 → (∀𝑥(𝜓𝑥 = 𝑦) ↔ ∀𝑥(𝜒𝑥 = 𝑦)))
54exbidv 1890 . 2 (𝜑 → (∃𝑦𝑥(𝜓𝑥 = 𝑦) ↔ ∃𝑦𝑥(𝜒𝑥 = 𝑦)))
6 df-eu 2502 . 2 (∃!𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦))
7 df-eu 2502 . 2 (∃!𝑥𝜒 ↔ ∃𝑦𝑥(𝜒𝑥 = 𝑦))
85, 6, 73bitr4g 303 1 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1521  wex 1744  wnf 1748  ∃!weu 2498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-12 2087
This theorem depends on definitions:  df-bi 197  df-ex 1745  df-nf 1750  df-eu 2502
This theorem is referenced by:  mobid  2517  eubidv  2518  euor  2541  euor2  2543  euan  2559  reubida  3154  reueq1f  3166  eusv2i  4893  reusv2lem3  4901  eubi  38954
  Copyright terms: Public domain W3C validator