![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euabsn2 | Structured version Visualization version GIF version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
euabsn2 | ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2502 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | abeq1 2762 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦})) | |
3 | velsn 4226 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | bibi2i 326 | . . . . 5 ⊢ ((𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ (𝜑 ↔ 𝑥 = 𝑦)) |
5 | 4 | albii 1787 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 264 | . . 3 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
7 | 6 | exbii 1814 | . 2 ⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
8 | 1, 7 | bitr4i 267 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1521 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∃!weu 2498 {cab 2637 {csn 4210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-sn 4211 |
This theorem is referenced by: euabsn 4293 reusn 4294 absneu 4295 uniintab 4547 eusvobj2 6683 |
Copyright terms: Public domain | W3C validator |