![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eu5 | Structured version Visualization version GIF version |
Description: Uniqueness in terms of "at most one." Revised to reduce dependencies on axioms. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 25-May-2019.) |
Ref | Expression |
---|---|
eu5 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abai 853 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃!𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑))) | |
2 | euex 2522 | . . 3 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | |
3 | 2 | pm4.71ri 666 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃!𝑥𝜑)) |
4 | df-mo 2503 | . . 3 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
5 | 4 | anbi2i 730 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ (∃𝑥𝜑 → ∃!𝑥𝜑))) |
6 | 1, 3, 5 | 3bitr4i 292 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∃wex 1744 ∃!weu 2498 ∃*wmo 2499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-eu 2502 df-mo 2503 |
This theorem is referenced by: exmoeu2 2525 eu3v 2526 eumoOLD 2528 eu2 2538 eu4 2547 euim 2552 2euex 2573 2euswap 2577 2exeu 2578 2eu4 2585 reu5 3189 reuss2 3940 n0moeu 3970 reusv2lem1 4898 funcnv3 5997 fnres 6045 mptfnf 6053 fnopabg 6055 brprcneu 6222 dff3 6412 finnisoeu 8974 dfac2 8991 recmulnq 9824 uptx 21476 hausflf2 21849 adjeu 28876 bnj151 31073 bnj600 31115 nosupno 31974 nosupfv 31977 bj-eu3f 32954 fzisoeu 39828 ellimciota 40164 |
Copyright terms: Public domain | W3C validator |