Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem47 Structured version   Visualization version   GIF version

Theorem etransclem47 41009
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem47.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem47.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem47.a 𝐴 = (coeff‘𝑄)
etransclem47.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem47.m 𝑀 = (deg‘𝑄)
etransclem47.p (𝜑𝑃 ∈ ℙ)
etransclem47.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem47.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem47.9 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
etransclem47.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem47.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem47.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem47 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑘,𝐾   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑄,𝑗   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑄(𝑥,𝑘)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘)

Proof of Theorem etransclem47
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem47.k . . . . 5 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
21a1i 11 . . . 4 (𝜑𝐾 = (𝐿 / (!‘(𝑃 − 1))))
3 etransclem47.q . . . . 5 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4 etransclem47.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
5 etransclem47.a . . . . 5 𝐴 = (coeff‘𝑄)
6 etransclem47.m . . . . 5 𝑀 = (deg‘𝑄)
7 ssid 3771 . . . . . 6 ℝ ⊆ ℝ
87a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℝ)
9 reelprrecn 10229 . . . . . 6 ℝ ∈ {ℝ, ℂ}
109a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
11 reopn 40013 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
12 eqid 2770 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312tgioo2 22825 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1411, 13eleqtri 2847 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
1514a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
16 etransclem47.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
17 prmnn 15594 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1816, 17syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
19 etransclem47.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
20 etransclem47.l . . . . 5 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
21 eqid 2770 . . . . 5 ((𝑀 · 𝑃) + (𝑃 − 1)) = ((𝑀 · 𝑃) + (𝑃 − 1))
22 fveq2 6332 . . . . . . 7 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2322sumeq2ad 14641 . . . . . 6 (𝑦 = 𝑥 → Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2423cbvmptv 4882 . . . . 5 (𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦)) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
25 negeq 10474 . . . . . . . . 9 (𝑧 = 𝑥 → -𝑧 = -𝑥)
2625oveq2d 6808 . . . . . . . 8 (𝑧 = 𝑥 → (e↑𝑐-𝑧) = (e↑𝑐-𝑥))
27 fveq2 6332 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧) = ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))
2826, 27oveq12d 6810 . . . . . . 7 (𝑧 = 𝑥 → ((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = ((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
2928negeqd 10476 . . . . . 6 (𝑧 = 𝑥 → -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
3029cbvmptv 4882 . . . . 5 (𝑧 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧))) = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
313, 4, 5, 6, 8, 10, 15, 18, 19, 20, 21, 24, 30etransclem46 41008 . . . 4 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
32 fzfid 12979 . . . . . . . 8 (𝜑 → (0...𝑀) ∈ Fin)
33 fzfid 12979 . . . . . . . 8 (𝜑 → (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin)
34 xpfi 8386 . . . . . . . 8 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
3532, 33, 34syl2anc 565 . . . . . . 7 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
363eldifad 3733 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Poly‘ℤ))
37 0zd 11590 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
385coef2 24206 . . . . . . . . . . . 12 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
3936, 37, 38syl2anc 565 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℤ)
4039adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
41 xp1st 7346 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
42 elfznn0 12639 . . . . . . . . . . . 12 ((1st𝑘) ∈ (0...𝑀) → (1st𝑘) ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
4443adantl 467 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
4540, 44ffvelrnd 6503 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
4645zcnd 11684 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
479a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
4814a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4918adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
50 dgrcl 24208 . . . . . . . . . . . . 13 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
5136, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝑄) ∈ ℕ0)
526, 51syl5eqel 2853 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
5352adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
54 xp2nd 7347 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
55 elfznn0 12639 . . . . . . . . . . . 12 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
5756adantl 467 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
5847, 48, 49, 53, 19, 57etransclem33 40995 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((ℝ D𝑛 𝐹)‘(2nd𝑘)):ℝ⟶ℂ)
5944nn0red 11553 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
6058, 59ffvelrnd 6503 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
6146, 60mulcld 10261 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
6235, 61fsumcl 14671 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
63 nnm1nn0 11535 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6418, 63syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6564faccld 13274 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6665nncnd 11237 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6765nnne0d 11266 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6862, 66, 67divnegd 11015 . . . . 5 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
6968eqcomd 2776 . . . 4 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
702, 31, 693eqtrd 2808 . . 3 (𝜑𝐾 = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
71 eqid 2770 . . . . 5 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
7218, 52, 19, 39, 71etransclem45 41007 . . . 4 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7372znegcld 11685 . . 3 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7470, 73eqeltrd 2849 . 2 (𝜑𝐾 ∈ ℤ)
751, 31syl5eq 2816 . . 3 (𝜑𝐾 = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
7662, 66, 67divcld 11002 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℂ)
77 etransclem47.a0 . . . . . 6 (𝜑 → (𝐴‘0) ≠ 0)
78 etransclem47.ap . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
79 etransclem47.mp . . . . . 6 (𝜑 → (!‘𝑀) < 𝑃)
8039, 77, 52, 16, 78, 79, 19, 71etransclem44 41006 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8176, 80negne0d 10591 . . . 4 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8269, 81eqnetrd 3009 . . 3 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8375, 82eqnetrd 3009 . 2 (𝜑𝐾 ≠ 0)
84 eldifsni 4455 . . . . . 6 (𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑄 ≠ 0𝑝)
853, 84syl 17 . . . . 5 (𝜑𝑄 ≠ 0𝑝)
86 ere 15024 . . . . . . 7 e ∈ ℝ
8786recni 10253 . . . . . 6 e ∈ ℂ
8887a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
89 dgrnznn 24222 . . . . 5 (((𝑄 ∈ (Poly‘ℤ) ∧ 𝑄 ≠ 0𝑝) ∧ (e ∈ ℂ ∧ (𝑄‘e) = 0)) → (deg‘𝑄) ∈ ℕ)
9036, 85, 88, 4, 89syl22anc 1476 . . . 4 (𝜑 → (deg‘𝑄) ∈ ℕ)
916, 90syl5eqel 2853 . . 3 (𝜑𝑀 ∈ ℕ)
92 etransclem47.9 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
9339, 20, 1, 18, 91, 19, 92etransclem23 40985 . 2 (𝜑 → (abs‘𝐾) < 1)
94 neeq1 3004 . . . 4 (𝑘 = 𝐾 → (𝑘 ≠ 0 ↔ 𝐾 ≠ 0))
95 fveq2 6332 . . . . 5 (𝑘 = 𝐾 → (abs‘𝑘) = (abs‘𝐾))
9695breq1d 4794 . . . 4 (𝑘 = 𝐾 → ((abs‘𝑘) < 1 ↔ (abs‘𝐾) < 1))
9794, 96anbi12d 608 . . 3 (𝑘 = 𝐾 → ((𝑘 ≠ 0 ∧ (abs‘𝑘) < 1) ↔ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)))
9897rspcev 3458 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
9974, 83, 93, 98syl12anc 1473 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wne 2942  wrex 3061  cdif 3718  wss 3721  {csn 4314  {cpr 4316   class class class wbr 4784  cmpt 4861   × cxp 5247  ran crn 5250  wf 6027  cfv 6031  (class class class)co 6792  1st c1st 7312  2nd c2nd 7313  Fincfn 8108  cc 10135  cr 10136  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142   < clt 10275  cmin 10467  -cneg 10468   / cdiv 10885  cn 11221  0cn0 11493  cz 11578  (,)cioo 12379  [,]cicc 12382  ...cfz 12532  cexp 13066  !cfa 13263  abscabs 14181  Σcsu 14623  cprod 14841  eceu 14998  cprime 15591  t crest 16288  TopOpenctopn 16289  topGenctg 16305  fldccnfld 19960  citg 23605  0𝑝c0p 23655   D𝑛 cdvn 23847  Polycply 24159  coeffccoe 24161  degcdgr 24162  𝑐ccxp 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cc 9458  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-ofr 7044  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-omul 7717  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-acn 8967  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-prod 14842  df-ef 15003  df-e 15004  df-sin 15005  df-cos 15006  df-tan 15007  df-pi 15008  df-dvds 15189  df-gcd 15424  df-prm 15592  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-cmp 21410  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-ovol 23451  df-vol 23452  df-mbf 23606  df-itg1 23607  df-itg2 23608  df-ibl 23609  df-itg 23610  df-0p 23656  df-limc 23849  df-dv 23850  df-dvn 23851  df-ply 24163  df-coe 24165  df-dgr 24166  df-log 24523  df-cxp 24524
This theorem is referenced by:  etransclem48  41010
  Copyright terms: Public domain W3C validator