Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem47 Structured version   Visualization version   GIF version

Theorem etransclem47 40261
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem47.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem47.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem47.a 𝐴 = (coeff‘𝑄)
etransclem47.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem47.m 𝑀 = (deg‘𝑄)
etransclem47.p (𝜑𝑃 ∈ ℙ)
etransclem47.ap (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
etransclem47.mp (𝜑 → (!‘𝑀) < 𝑃)
etransclem47.9 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
etransclem47.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem47.l 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
etransclem47.k 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
Assertion
Ref Expression
etransclem47 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑘,𝐾   𝑗,𝑀,𝑘,𝑥   𝑃,𝑗,𝑘,𝑥   𝑄,𝑗   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑄(𝑥,𝑘)   𝐾(𝑥,𝑗)   𝐿(𝑥,𝑗,𝑘)

Proof of Theorem etransclem47
Dummy variables 𝑖 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem47.k . . . . 5 𝐾 = (𝐿 / (!‘(𝑃 − 1)))
21a1i 11 . . . 4 (𝜑𝐾 = (𝐿 / (!‘(𝑃 − 1))))
3 etransclem47.q . . . . 5 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
4 etransclem47.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
5 etransclem47.a . . . . 5 𝐴 = (coeff‘𝑄)
6 etransclem47.m . . . . 5 𝑀 = (deg‘𝑄)
7 ssid 3616 . . . . . 6 ℝ ⊆ ℝ
87a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℝ)
9 reelprrecn 10013 . . . . . 6 ℝ ∈ {ℝ, ℂ}
109a1i 11 . . . . 5 (𝜑 → ℝ ∈ {ℝ, ℂ})
11 reopn 39314 . . . . . . 7 ℝ ∈ (topGen‘ran (,))
12 eqid 2620 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312tgioo2 22587 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1411, 13eleqtri 2697 . . . . . 6 ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ)
1514a1i 11 . . . . 5 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
16 etransclem47.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
17 prmnn 15369 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1816, 17syl 17 . . . . 5 (𝜑𝑃 ∈ ℕ)
19 etransclem47.f . . . . 5 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
20 etransclem47.l . . . . 5 𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)
21 eqid 2620 . . . . 5 ((𝑀 · 𝑃) + (𝑃 − 1)) = ((𝑀 · 𝑃) + (𝑃 − 1))
22 fveq2 6178 . . . . . . 7 (𝑦 = 𝑥 → (((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = (((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2322sumeq2ad 14415 . . . . . 6 (𝑦 = 𝑥 → Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦) = Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
2423cbvmptv 4741 . . . . 5 (𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦)) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))
25 negeq 10258 . . . . . . . . 9 (𝑧 = 𝑥 → -𝑧 = -𝑥)
2625oveq2d 6651 . . . . . . . 8 (𝑧 = 𝑥 → (e↑𝑐-𝑧) = (e↑𝑐-𝑥))
27 fveq2 6178 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧) = ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥))
2826, 27oveq12d 6653 . . . . . . 7 (𝑧 = 𝑥 → ((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = ((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
2928negeqd 10260 . . . . . 6 (𝑧 = 𝑥 → -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧)) = -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
3029cbvmptv 4741 . . . . 5 (𝑧 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑧) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑧))) = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ Σ𝑖 ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1)))(((ℝ D𝑛 𝐹)‘𝑖)‘𝑦))‘𝑥)))
313, 4, 5, 6, 8, 10, 15, 18, 19, 20, 21, 24, 30etransclem46 40260 . . . 4 (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
32 fzfid 12755 . . . . . . . 8 (𝜑 → (0...𝑀) ∈ Fin)
33 fzfid 12755 . . . . . . . 8 (𝜑 → (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin)
34 xpfi 8216 . . . . . . . 8 (((0...𝑀) ∈ Fin ∧ (0...((𝑀 · 𝑃) + (𝑃 − 1))) ∈ Fin) → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
3532, 33, 34syl2anc 692 . . . . . . 7 (𝜑 → ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) ∈ Fin)
363eldifad 3579 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Poly‘ℤ))
37 0zd 11374 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℤ)
385coef2 23968 . . . . . . . . . . . 12 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
3936, 37, 38syl2anc 692 . . . . . . . . . . 11 (𝜑𝐴:ℕ0⟶ℤ)
4039adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝐴:ℕ0⟶ℤ)
41 xp1st 7183 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ (0...𝑀))
42 elfznn0 12417 . . . . . . . . . . . 12 ((1st𝑘) ∈ (0...𝑀) → (1st𝑘) ∈ ℕ0)
4341, 42syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (1st𝑘) ∈ ℕ0)
4443adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℕ0)
4540, 44ffvelrnd 6346 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℤ)
4645zcnd 11468 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (𝐴‘(1st𝑘)) ∈ ℂ)
479a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ {ℝ, ℂ})
4814a1i 11 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
4918adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑃 ∈ ℕ)
50 dgrcl 23970 . . . . . . . . . . . . 13 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
5136, 50syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝑄) ∈ ℕ0)
526, 51syl5eqel 2703 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ0)
5352adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → 𝑀 ∈ ℕ0)
54 xp2nd 7184 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))))
55 elfznn0 12417 . . . . . . . . . . . 12 ((2nd𝑘) ∈ (0...((𝑀 · 𝑃) + (𝑃 − 1))) → (2nd𝑘) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1)))) → (2nd𝑘) ∈ ℕ0)
5756adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (2nd𝑘) ∈ ℕ0)
5847, 48, 49, 53, 19, 57etransclem33 40247 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((ℝ D𝑛 𝐹)‘(2nd𝑘)):ℝ⟶ℂ)
5944nn0red 11337 . . . . . . . . 9 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (1st𝑘) ∈ ℝ)
6058, 59ffvelrnd 6346 . . . . . . . 8 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘)) ∈ ℂ)
6146, 60mulcld 10045 . . . . . . 7 ((𝜑𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))) → ((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
6235, 61fsumcl 14445 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) ∈ ℂ)
63 nnm1nn0 11319 . . . . . . . . 9 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
6418, 63syl 17 . . . . . . . 8 (𝜑 → (𝑃 − 1) ∈ ℕ0)
6564faccld 13054 . . . . . . 7 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
6665nncnd 11021 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∈ ℂ)
6765nnne0d 11050 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ≠ 0)
6862, 66, 67divnegd 10799 . . . . 5 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
6968eqcomd 2626 . . . 4 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
702, 31, 693eqtrd 2658 . . 3 (𝜑𝐾 = -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
71 eqid 2620 . . . . 5 𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))
7218, 52, 19, 39, 71etransclem45 40259 . . . 4 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7372znegcld 11469 . . 3 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℤ)
7470, 73eqeltrd 2699 . 2 (𝜑𝐾 ∈ ℤ)
751, 31syl5eq 2666 . . 3 (𝜑𝐾 = (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))
7662, 66, 67divcld 10786 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ∈ ℂ)
77 etransclem47.a0 . . . . . 6 (𝜑 → (𝐴‘0) ≠ 0)
78 etransclem47.ap . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) < 𝑃)
79 etransclem47.mp . . . . . 6 (𝜑 → (!‘𝑀) < 𝑃)
8039, 77, 52, 16, 78, 79, 19, 71etransclem44 40258 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8176, 80negne0d 10375 . . . 4 (𝜑 → -(Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8269, 81eqnetrd 2858 . . 3 (𝜑 → (-Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))) ≠ 0)
8375, 82eqnetrd 2858 . 2 (𝜑𝐾 ≠ 0)
84 eldifsni 4311 . . . . . 6 (𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}) → 𝑄 ≠ 0𝑝)
853, 84syl 17 . . . . 5 (𝜑𝑄 ≠ 0𝑝)
86 ere 14800 . . . . . . 7 e ∈ ℝ
8786recni 10037 . . . . . 6 e ∈ ℂ
8887a1i 11 . . . . 5 (𝜑 → e ∈ ℂ)
89 dgrnznn 23984 . . . . 5 (((𝑄 ∈ (Poly‘ℤ) ∧ 𝑄 ≠ 0𝑝) ∧ (e ∈ ℂ ∧ (𝑄‘e) = 0)) → (deg‘𝑄) ∈ ℕ)
9036, 85, 88, 4, 89syl22anc 1325 . . . 4 (𝜑 → (deg‘𝑄) ∈ ℕ)
916, 90syl5eqel 2703 . . 3 (𝜑𝑀 ∈ ℕ)
92 etransclem47.9 . . 3 (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)
9339, 20, 1, 18, 91, 19, 92etransclem23 40237 . 2 (𝜑 → (abs‘𝐾) < 1)
94 neeq1 2853 . . . 4 (𝑘 = 𝐾 → (𝑘 ≠ 0 ↔ 𝐾 ≠ 0))
95 fveq2 6178 . . . . 5 (𝑘 = 𝐾 → (abs‘𝑘) = (abs‘𝐾))
9695breq1d 4654 . . . 4 (𝑘 = 𝐾 → ((abs‘𝑘) < 1 ↔ (abs‘𝐾) < 1))
9794, 96anbi12d 746 . . 3 (𝑘 = 𝐾 → ((𝑘 ≠ 0 ∧ (abs‘𝑘) < 1) ↔ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)))
9897rspcev 3304 . 2 ((𝐾 ∈ ℤ ∧ (𝐾 ≠ 0 ∧ (abs‘𝐾) < 1)) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
9974, 83, 93, 98syl12anc 1322 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wne 2791  wrex 2910  cdif 3564  wss 3567  {csn 4168  {cpr 4170   class class class wbr 4644  cmpt 4720   × cxp 5102  ran crn 5105  wf 5872  cfv 5876  (class class class)co 6635  1st c1st 7151  2nd c2nd 7152  Fincfn 7940  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059  cmin 10251  -cneg 10252   / cdiv 10669  cn 11005  0cn0 11277  cz 11362  (,)cioo 12160  [,]cicc 12163  ...cfz 12311  cexp 12843  !cfa 13043  abscabs 13955  Σcsu 14397  cprod 14616  eceu 14774  cprime 15366  t crest 16062  TopOpenctopn 16063  topGenctg 16079  fldccnfld 19727  citg 23368  0𝑝c0p 23417   D𝑛 cdvn 23609  Polycply 23921  coeffccoe 23923  degcdgr 23924  𝑐ccxp 24283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-disj 4612  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-ofr 6883  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-prod 14617  df-ef 14779  df-e 14780  df-sin 14781  df-cos 14782  df-tan 14783  df-pi 14784  df-dvds 14965  df-gcd 15198  df-prm 15367  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-cmp 21171  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-ovol 23214  df-vol 23215  df-mbf 23369  df-itg1 23370  df-itg2 23371  df-ibl 23372  df-itg 23373  df-0p 23418  df-limc 23611  df-dv 23612  df-dvn 23613  df-ply 23925  df-coe 23927  df-dgr 23928  df-log 24284  df-cxp 24285
This theorem is referenced by:  etransclem48  40262
  Copyright terms: Public domain W3C validator