Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem37 Structured version   Visualization version   GIF version

Theorem etransclem37 40960
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem37.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem37.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem37.p (𝜑𝑃 ∈ ℕ)
etransclem37.m (𝜑𝑀 ∈ ℕ0)
etransclem37.f 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem37.n (𝜑𝑁 ∈ ℕ0)
etransclem37.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem37.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem37.9 (𝜑𝐽 ∈ (0...𝑀))
etransclem37.j (𝜑𝐽𝑋)
Assertion
Ref Expression
etransclem37 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Distinct variable groups:   𝐶,𝑐,𝑗,𝑥   𝐻,𝑐,𝑗,𝑛,𝑥   𝐽,𝑐,𝑗,𝑥   𝑀,𝑐,𝑗,𝑛,𝑥   𝑁,𝑐,𝑗,𝑛,𝑥   𝑃,𝑐,𝑗,𝑥   𝑆,𝑐,𝑗,𝑛,𝑥   𝑗,𝑋,𝑛,𝑥   𝜑,𝑐,𝑗,𝑛,𝑥
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)   𝐹(𝑥,𝑗,𝑛,𝑐)   𝐽(𝑛)   𝑋(𝑐)

Proof of Theorem etransclem37
Dummy variables 𝑘 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem37.c . . . 4 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
2 etransclem37.n . . . 4 (𝜑𝑁 ∈ ℕ0)
31, 2etransclem16 40939 . . 3 (𝜑 → (𝐶𝑁) ∈ Fin)
4 etransclem37.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
5 nnm1nn0 11497 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
76faccld 13236 . . . 4 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
87nnzd 11644 . . 3 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
91, 2etransclem12 40935 . . . . . . . . . . . 12 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
109eleq2d 2813 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (𝐶𝑁) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁}))
1110biimpa 502 . . . . . . . . . 10 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 rabid 3242 . . . . . . . . . . . 12 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1312biimpi 206 . . . . . . . . . . 11 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁))
1413simprd 482 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1511, 14syl 17 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐶𝑁)) → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁)
1615eqcomd 2754 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 = Σ𝑗 ∈ (0...𝑀)(𝑐𝑗))
1716fveq2d 6344 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)))
1817oveq1d 6816 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))))
19 nfcv 2890 . . . . . . 7 𝑗𝑐
20 fzfid 12937 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → (0...𝑀) ∈ Fin)
21 nn0ex 11461 . . . . . . . . . . 11 0 ∈ V
2221a1i 11 . . . . . . . . . 10 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ℕ0 ∈ V)
23 fzssnn0 40000 . . . . . . . . . 10 (0...𝑁) ⊆ ℕ0
24 mapss 8054 . . . . . . . . . 10 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2522, 23, 24sylancl 697 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2613simpld 477 . . . . . . . . 9 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2725, 26sseldd 3733 . . . . . . . 8 (𝑐 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝑐 ∈ (ℕ0𝑚 (0...𝑀)))
2811, 27syl 17 . . . . . . 7 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (ℕ0𝑚 (0...𝑀)))
2919, 20, 28mccl 40302 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘Σ𝑗 ∈ (0...𝑀)(𝑐𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3018, 29eqeltrd 2827 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℕ)
3130nnzd 11644 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) ∈ ℤ)
324adantr 472 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑃 ∈ ℕ)
33 etransclem37.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3433adantr 472 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑀 ∈ ℕ0)
35 elmapi 8033 . . . . . . 7 (𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
3611, 26, 353syl 18 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐:(0...𝑀)⟶(0...𝑁))
37 etransclem37.9 . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
3837elfzelzd 39997 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
3938adantr 472 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ ℤ)
4032, 34, 36, 39etransclem10 40933 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) ∈ ℤ)
41 fzfid 12937 . . . . . 6 ((𝜑𝑐 ∈ (𝐶𝑁)) → (1...𝑀) ∈ Fin)
4232adantr 472 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
4336adantr 472 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑐:(0...𝑀)⟶(0...𝑁))
44 0z 11551 . . . . . . . . . . 11 0 ∈ ℤ
45 fzp1ss 12556 . . . . . . . . . . 11 (0 ∈ ℤ → ((0 + 1)...𝑀) ⊆ (0...𝑀))
4644, 45ax-mp 5 . . . . . . . . . 10 ((0 + 1)...𝑀) ⊆ (0...𝑀)
4746sseli 3728 . . . . . . . . 9 (𝑗 ∈ ((0 + 1)...𝑀) → 𝑗 ∈ (0...𝑀))
48 1e0p1 11715 . . . . . . . . . 10 1 = (0 + 1)
4948oveq1i 6811 . . . . . . . . 9 (1...𝑀) = ((0 + 1)...𝑀)
5047, 49eleq2s 2845 . . . . . . . 8 (𝑗 ∈ (1...𝑀) → 𝑗 ∈ (0...𝑀))
5150adantl 473 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝑗 ∈ (0...𝑀))
5239adantr 472 . . . . . . 7 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → 𝐽 ∈ ℤ)
5342, 43, 51, 52etransclem3 40926 . . . . . 6 (((𝜑𝑐 ∈ (𝐶𝑁)) ∧ 𝑗 ∈ (1...𝑀)) → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5441, 53fprodzcl 14854 . . . . 5 ((𝜑𝑐 ∈ (𝐶𝑁)) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) ∈ ℤ)
5540, 54zmulcld 11651 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) ∈ ℤ)
5631, 55zmulcld 11651 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) ∈ ℤ)
572adantr 472 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑁 ∈ ℕ0)
58 etransclem11 40934 . . . . 5 (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
591, 58eqtri 2770 . . . 4 𝐶 = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})
60 simpr 479 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝑐 ∈ (𝐶𝑁))
6137adantr 472 . . . 4 ((𝜑𝑐 ∈ (𝐶𝑁)) → 𝐽 ∈ (0...𝑀))
62 fveq2 6340 . . . . . . . 8 (𝑗 = 𝑘 → (𝑐𝑗) = (𝑐𝑘))
6362fveq2d 6344 . . . . . . 7 (𝑗 = 𝑘 → (!‘(𝑐𝑗)) = (!‘(𝑐𝑘)))
6463cbvprodv 14816 . . . . . 6 𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗)) = ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))
6564oveq2i 6812 . . . . 5 ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) = ((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘)))
6662breq2d 4804 . . . . . . . 8 (𝑗 = 𝑘 → (𝑃 < (𝑐𝑗) ↔ 𝑃 < (𝑐𝑘)))
6762oveq2d 6817 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑃 − (𝑐𝑗)) = (𝑃 − (𝑐𝑘)))
6867fveq2d 6344 . . . . . . . . . 10 (𝑗 = 𝑘 → (!‘(𝑃 − (𝑐𝑗))) = (!‘(𝑃 − (𝑐𝑘))))
6968oveq2d 6817 . . . . . . . . 9 (𝑗 = 𝑘 → ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) = ((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))))
70 oveq2 6809 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝐽𝑗) = (𝐽𝑘))
7170, 67oveq12d 6819 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))) = ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))
7269, 71oveq12d 6819 . . . . . . . 8 (𝑗 = 𝑘 → (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7366, 72ifbieq2d 4243 . . . . . . 7 (𝑗 = 𝑘 → if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7473cbvprodv 14816 . . . . . 6 𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))) = ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))
7574oveq2i 6812 . . . . 5 (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗)))))) = (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘))))))
7665, 75oveq12i 6813 . . . 4 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))) = (((!‘𝑁) / ∏𝑘 ∈ (0...𝑀)(!‘(𝑐𝑘))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑘 ∈ (1...𝑀)if(𝑃 < (𝑐𝑘), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑘)))) · ((𝐽𝑘)↑(𝑃 − (𝑐𝑘)))))))
7732, 34, 57, 59, 60, 61, 76etransclem28 40951 . . 3 ((𝜑𝑐 ∈ (𝐶𝑁)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
783, 8, 56, 77fsumdvds 15203 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
79 etransclem37.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
80 etransclem37.x . . 3 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
81 etransclem37.f . . 3 𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
82 etransclem37.h . . 3 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
83 etransclem37.j . . 3 (𝜑𝐽𝑋)
8479, 80, 4, 33, 81, 2, 82, 1, 83etransclem31 40954 . 2 (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝐽↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝑐𝑗))))))))
8578, 84breqtrrd 4820 1 (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  wcel 2127  {crab 3042  Vcvv 3328  wss 3703  ifcif 4218  {cpr 4311   class class class wbr 4792  cmpt 4869  wf 6033  cfv 6037  (class class class)co 6801  𝑚 cmap 8011  cc 10097  cr 10098  0cc0 10099  1c1 10100   + caddc 10102   · cmul 10104   < clt 10237  cmin 10429   / cdiv 10847  cn 11183  0cn0 11455  cz 11540  ...cfz 12490  cexp 13025  !cfa 13225  Σcsu 14586  cprod 14805  cdvds 15153  t crest 16254  TopOpenctopn 16255  fldccnfld 19919   D𝑛 cdvn 23798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-seq 12967  df-exp 13026  df-fac 13226  df-bc 13255  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-prod 14806  df-dvds 15154  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-rest 16256  df-topn 16257  df-0g 16275  df-gsum 16276  df-topgen 16277  df-pt 16278  df-prds 16281  df-xrs 16335  df-qtop 16340  df-imas 16341  df-xps 16343  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-mulg 17713  df-cntz 17921  df-cmn 18366  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-fbas 19916  df-fg 19917  df-cnfld 19920  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-cld 20996  df-ntr 20997  df-cls 20998  df-nei 21075  df-lp 21113  df-perf 21114  df-cn 21204  df-cnp 21205  df-haus 21292  df-tx 21538  df-hmeo 21731  df-fil 21822  df-fm 21914  df-flim 21915  df-flf 21916  df-xms 22297  df-ms 22298  df-tms 22299  df-cncf 22853  df-limc 23800  df-dv 23801  df-dvn 23802
This theorem is referenced by:  etransclem44  40967  etransclem45  40968
  Copyright terms: Public domain W3C validator