Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem28 Structured version   Visualization version   GIF version

Theorem etransclem28 40974
Description: (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem28.p (𝜑𝑃 ∈ ℕ)
etransclem28.m (𝜑𝑀 ∈ ℕ0)
etransclem28.n (𝜑𝑁 ∈ ℕ0)
etransclem28.c 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
etransclem28.d (𝜑𝐷 ∈ (𝐶𝑁))
etransclem28.j (𝜑𝐽 ∈ (0...𝑀))
etransclem28.t 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
Assertion
Ref Expression
etransclem28 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Distinct variable groups:   𝐷,𝑐,𝑗   𝑗,𝐽   𝑀,𝑐,𝑗,𝑛   𝑁,𝑐,𝑛   𝑃,𝑗   𝜑,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑗,𝑛,𝑐)   𝐷(𝑛)   𝑃(𝑛,𝑐)   𝑇(𝑗,𝑛,𝑐)   𝐽(𝑛,𝑐)   𝑁(𝑗)

Proof of Theorem etransclem28
StepHypRef Expression
1 etransclem28.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℕ)
2 nnm1nn0 11518 . . . . . . . . . . . 12 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
31, 2syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ ℕ0)
43faccld 13257 . . . . . . . . . 10 (𝜑 → (!‘(𝑃 − 1)) ∈ ℕ)
54nnzd 11665 . . . . . . . . 9 (𝜑 → (!‘(𝑃 − 1)) ∈ ℤ)
65adantr 472 . . . . . . . 8 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∈ ℤ)
7 etransclem28.d . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐶𝑁))
8 etransclem28.c . . . . . . . . . . . . . . . . 17 𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})
9 etransclem28.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℕ0)
108, 9etransclem12 40958 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
117, 10eleqtrd 2833 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})
12 fveq1 6343 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝐷 → (𝑐𝑗) = (𝐷𝑗))
1312sumeq2ad 14625 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐷 → Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1413eqeq1d 2754 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐷 → (Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁 ↔ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1514elrab 3496 . . . . . . . . . . . . . . . 16 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} ↔ (𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∧ Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁))
1615simprbi 483 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1711, 16syl 17 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
1817eqcomd 2758 . . . . . . . . . . . . 13 (𝜑𝑁 = Σ𝑗 ∈ (0...𝑀)(𝐷𝑗))
1918fveq2d 6348 . . . . . . . . . . . 12 (𝜑 → (!‘𝑁) = (!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)))
2019oveq1d 6820 . . . . . . . . . . 11 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) = ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))))
21 nfcv 2894 . . . . . . . . . . . 12 𝑗𝐷
22 fzfid 12958 . . . . . . . . . . . 12 (𝜑 → (0...𝑀) ∈ Fin)
23 nn0ex 11482 . . . . . . . . . . . . . . 15 0 ∈ V
24 fzssnn0 40023 . . . . . . . . . . . . . . . 16 (0...𝑁) ⊆ ℕ0
2524a1i 11 . . . . . . . . . . . . . . 15 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → (0...𝑁) ⊆ ℕ0)
26 mapss 8058 . . . . . . . . . . . . . . 15 ((ℕ0 ∈ V ∧ (0...𝑁) ⊆ ℕ0) → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
2723, 25, 26sylancr 698 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → ((0...𝑁) ↑𝑚 (0...𝑀)) ⊆ (ℕ0𝑚 (0...𝑀)))
28 elrabi 3491 . . . . . . . . . . . . . 14 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
2927, 28sseldd 3737 . . . . . . . . . . . . 13 (𝐷 ∈ {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁} → 𝐷 ∈ (ℕ0𝑚 (0...𝑀)))
3011, 29syl 17 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (ℕ0𝑚 (0...𝑀)))
3121, 22, 30mccl 40325 . . . . . . . . . . 11 (𝜑 → ((!‘Σ𝑗 ∈ (0...𝑀)(𝐷𝑗)) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3220, 31eqeltrd 2831 . . . . . . . . . 10 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℕ)
3332nnzd 11665 . . . . . . . . 9 (𝜑 → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
3433adantr 472 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ)
35 oveq1 6812 . . . . . . . . . . . . . . . 16 (𝐽 = 0 → (𝐽𝑗) = (0 − 𝑗))
36 df-neg 10453 . . . . . . . . . . . . . . . 16 -𝑗 = (0 − 𝑗)
3735, 36syl6reqr 2805 . . . . . . . . . . . . . . 15 (𝐽 = 0 → -𝑗 = (𝐽𝑗))
3837oveq1d 6820 . . . . . . . . . . . . . 14 (𝐽 = 0 → (-𝑗↑(𝑃 − (𝐷𝑗))) = ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))
3938oveq2d 6821 . . . . . . . . . . . . 13 (𝐽 = 0 → (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))) = (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))
4039ifeq2d 4241 . . . . . . . . . . . 12 (𝐽 = 0 → if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4140prodeq2ad 40319 . . . . . . . . . . 11 (𝐽 = 0 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4241adantl 473 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) = ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))
4311, 28syl 17 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)))
44 elmapi 8037 . . . . . . . . . . . . 13 (𝐷 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) → 𝐷:(0...𝑀)⟶(0...𝑁))
4543, 44syl 17 . . . . . . . . . . . 12 (𝜑𝐷:(0...𝑀)⟶(0...𝑁))
46 etransclem28.j . . . . . . . . . . . 12 (𝜑𝐽 ∈ (0...𝑀))
471, 45, 46etransclem7 40953 . . . . . . . . . . 11 (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4847adantr 472 . . . . . . . . . 10 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
4942, 48eqeltrd 2831 . . . . . . . . 9 ((𝜑𝐽 = 0) → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ)
506, 49zmulcld 11672 . . . . . . . 8 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ)
516, 34, 503jca 1122 . . . . . . 7 ((𝜑𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ))
52 dvdsmul1 15197 . . . . . . . 8 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))) ∈ ℤ) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
536, 49, 52syl2anc 696 . . . . . . 7 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))
54 dvdsmultr2 15215 . . . . . . 7 (((!‘(𝑃 − 1)) ∈ ℤ ∧ ((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) ∈ ℤ ∧ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) ∈ ℤ) → ((!‘(𝑃 − 1)) ∥ ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗)))))))))
5551, 53, 54sylc 65 . . . . . 6 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
5655adantr 472 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
571ad2antrr 764 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
58 etransclem28.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
5958ad2antrr 764 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
6045ad2antrr 764 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
61 eqid 2752 . . . . . 6 (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
62 simplr 809 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
63 simpr 479 . . . . . 6 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) = (𝑃 − 1))
6457, 59, 60, 61, 62, 63etransclem14 40960 . . . . 5 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · (-𝑗↑(𝑃 − (𝐷𝑗))))))))
6556, 64breqtrrd 4824 . . . 4 (((𝜑𝐽 = 0) ∧ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
66 dvds0 15191 . . . . . . 7 ((!‘(𝑃 − 1)) ∈ ℤ → (!‘(𝑃 − 1)) ∥ 0)
675, 66syl 17 . . . . . 6 (𝜑 → (!‘(𝑃 − 1)) ∥ 0)
6867ad2antrr 764 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ 0)
691ad2antrr 764 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑃 ∈ ℕ)
7058ad2antrr 764 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑀 ∈ ℕ0)
719ad2antrr 764 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝑁 ∈ ℕ0)
7245ad2antrr 764 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐷:(0...𝑀)⟶(0...𝑁))
73 simplr 809 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → 𝐽 = 0)
74 neqne 2932 . . . . . . 7 (¬ (𝐷‘0) = (𝑃 − 1) → (𝐷‘0) ≠ (𝑃 − 1))
7574adantl 473 . . . . . 6 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (𝐷‘0) ≠ (𝑃 − 1))
7669, 70, 71, 72, 61, 73, 75etransclem15 40961 . . . . 5 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) = 0)
7768, 76breqtrrd 4824 . . . 4 (((𝜑𝐽 = 0) ∧ ¬ (𝐷‘0) = (𝑃 − 1)) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
7865, 77pm2.61dan 867 . . 3 ((𝜑𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
791nnzd 11665 . . . . . 6 (𝜑𝑃 ∈ ℤ)
80 elfznn0 12618 . . . . . . . . 9 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℕ0)
8146, 80syl 17 . . . . . . . 8 (𝜑𝐽 ∈ ℕ0)
8281nn0zd 11664 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
831, 58, 9, 82, 8, 7etransclem26 40972 . . . . . 6 (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)
845, 79, 833jca 1122 . . . . 5 (𝜑 → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
8584adantr 472 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ))
861nncnd 11220 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
87 1cnd 10240 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8886, 87npcand 10580 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
8988eqcomd 2758 . . . . . . . 8 (𝜑𝑃 = ((𝑃 − 1) + 1))
9089fveq2d 6348 . . . . . . 7 (𝜑 → (!‘𝑃) = (!‘((𝑃 − 1) + 1)))
91 facp1 13251 . . . . . . . 8 ((𝑃 − 1) ∈ ℕ0 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
923, 91syl 17 . . . . . . 7 (𝜑 → (!‘((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)))
9388oveq2d 6821 . . . . . . 7 (𝜑 → ((!‘(𝑃 − 1)) · ((𝑃 − 1) + 1)) = ((!‘(𝑃 − 1)) · 𝑃))
9490, 92, 933eqtrrd 2791 . . . . . 6 (𝜑 → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
9594adantr 472 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) = (!‘𝑃))
961adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 ∈ ℕ)
9758adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℕ0)
989adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑁 ∈ ℕ0)
9945adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐷:(0...𝑀)⟶(0...𝑁))
10017adantr 472 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → Σ𝑗 ∈ (0...𝑀)(𝐷𝑗) = 𝑁)
101 1zzd 11592 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ∈ ℤ)
10258nn0zd 11664 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
103102adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑀 ∈ ℤ)
10482adantr 472 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℤ)
105101, 103, 1043jca 1122 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → (1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ))
10681adantr 472 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ0)
107 neqne 2932 . . . . . . . . . . 11 𝐽 = 0 → 𝐽 ≠ 0)
108107adantl 473 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ≠ 0)
109 elnnne0 11490 . . . . . . . . . 10 (𝐽 ∈ ℕ ↔ (𝐽 ∈ ℕ0𝐽 ≠ 0))
110106, 108, 109sylanbrc 701 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ ℕ)
111110nnge1d 11247 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 1 ≤ 𝐽)
112 elfzle2 12530 . . . . . . . . . 10 (𝐽 ∈ (0...𝑀) → 𝐽𝑀)
11346, 112syl 17 . . . . . . . . 9 (𝜑𝐽𝑀)
114113adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽𝑀)
115105, 111, 114jca32 559 . . . . . . 7 ((𝜑 ∧ ¬ 𝐽 = 0) → ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽𝑀)))
116 elfz2 12518 . . . . . . 7 (𝐽 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽𝑀)))
117115, 116sylibr 224 . . . . . 6 ((𝜑 ∧ ¬ 𝐽 = 0) → 𝐽 ∈ (1...𝑀))
11896, 97, 98, 99, 100, 61, 117etransclem25 40971 . . . . 5 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
11995, 118eqbrtrd 4818 . . . 4 ((𝜑 ∧ ¬ 𝐽 = 0) → ((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
120 muldvds1 15200 . . . 4 (((!‘(𝑃 − 1)) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ) → (((!‘(𝑃 − 1)) · 𝑃) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))))
12185, 119, 120sylc 65 . . 3 ((𝜑 ∧ ¬ 𝐽 = 0) → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
12278, 121pm2.61dan 867 . 2 (𝜑 → (!‘(𝑃 − 1)) ∥ (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))))
123 etransclem28.t . 2 𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))
124122, 123syl6breqr 4838 1 (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924  {crab 3046  Vcvv 3332  wss 3707  ifcif 4222   class class class wbr 4796  cmpt 4873  wf 6037  cfv 6041  (class class class)co 6805  𝑚 cmap 8015  0cc0 10120  1c1 10121   + caddc 10123   · cmul 10125   < clt 10258  cle 10259  cmin 10450  -cneg 10451   / cdiv 10868  cn 11204  0cn0 11476  cz 11561  ...cfz 12511  cexp 13046  !cfa 13246  Σcsu 14607  cprod 14826  cdvds 15174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-oi 8572  df-card 8947  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fz 12512  df-fzo 12652  df-seq 12988  df-exp 13047  df-fac 13247  df-bc 13276  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-prod 14827  df-dvds 15175
This theorem is referenced by:  etransclem37  40983  etransclem38  40984
  Copyright terms: Public domain W3C validator