![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem19 | Structured version Visualization version GIF version |
Description: The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem19.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
etransclem19.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
etransclem19.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
etransclem19.1 | ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) |
etransclem19.J | ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) |
etransclem19.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
etransclem19.7 | ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) |
Ref | Expression |
---|---|
etransclem19 | ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem19.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | etransclem19.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
3 | etransclem19.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
4 | etransclem19.1 | . . 3 ⊢ 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) | |
5 | etransclem19.J | . . 3 ⊢ (𝜑 → 𝐽 ∈ (0...𝑀)) | |
6 | etransclem19.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
7 | 0red 10079 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
8 | 6 | zred 11520 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
9 | nnm1nn0 11372 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0) | |
10 | 3, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑃 − 1) ∈ ℕ0) |
11 | 10 | nn0red 11390 | . . . . . . 7 ⊢ (𝜑 → (𝑃 − 1) ∈ ℝ) |
12 | 3 | nnred 11073 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
13 | 11, 12 | ifcld 4164 | . . . . . 6 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℝ) |
14 | 10 | nn0ge0d 11392 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≤ (𝑃 − 1)) |
15 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 = 0) → 0 ≤ (𝑃 − 1)) |
16 | iftrue 4125 | . . . . . . . . . 10 ⊢ (𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = (𝑃 − 1)) | |
17 | 16 | eqcomd 2657 | . . . . . . . . 9 ⊢ (𝐽 = 0 → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
18 | 17 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐽 = 0) → (𝑃 − 1) = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
19 | 15, 18 | breqtrd 4711 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
20 | 3 | nnnn0d 11389 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑃 ∈ ℕ0) |
21 | 20 | nn0ge0d 11392 | . . . . . . . . 9 ⊢ (𝜑 → 0 ≤ 𝑃) |
22 | 21 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ 𝑃) |
23 | iffalse 4128 | . . . . . . . . . 10 ⊢ (¬ 𝐽 = 0 → if(𝐽 = 0, (𝑃 − 1), 𝑃) = 𝑃) | |
24 | 23 | eqcomd 2657 | . . . . . . . . 9 ⊢ (¬ 𝐽 = 0 → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
25 | 24 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 𝑃 = if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
26 | 22, 25 | breqtrd 4711 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝐽 = 0) → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
27 | 19, 26 | pm2.61dan 849 | . . . . . 6 ⊢ (𝜑 → 0 ≤ if(𝐽 = 0, (𝑃 − 1), 𝑃)) |
28 | etransclem19.7 | . . . . . 6 ⊢ (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁) | |
29 | 7, 13, 8, 27, 28 | lelttrd 10233 | . . . . 5 ⊢ (𝜑 → 0 < 𝑁) |
30 | 7, 8, 29 | ltled 10223 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝑁) |
31 | elnn0z 11428 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁)) | |
32 | 6, 30, 31 | sylanbrc 699 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
33 | 1, 2, 3, 4, 5, 32 | etransclem17 40786 | . 2 ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))) |
34 | 28 | iftrued 4127 | . . 3 ⊢ (𝜑 → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = 0) |
35 | 34 | mpteq2dv 4778 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 − 𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥 ∈ 𝑋 ↦ 0)) |
36 | 33, 35 | eqtrd 2685 | 1 ⊢ (𝜑 → ((𝑆 D𝑛 (𝐻‘𝐽))‘𝑁) = (𝑥 ∈ 𝑋 ↦ 0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ifcif 4119 {cpr 4212 class class class wbr 4685 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 · cmul 9979 < clt 10112 ≤ cle 10113 − cmin 10304 / cdiv 10722 ℕcn 11058 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 ↑cexp 12900 !cfa 13100 ↾t crest 16128 TopOpenctopn 16129 ℂfldccnfld 19794 D𝑛 cdvn 23673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-icc 12220 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-fac 13101 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cncf 22728 df-limc 23675 df-dv 23676 df-dvn 23677 |
This theorem is referenced by: etransclem32 40801 |
Copyright terms: Public domain | W3C validator |