Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem18 Structured version   Visualization version   GIF version

Theorem etransclem18 40972
Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem18.s (𝜑 → ℝ ∈ {ℝ, ℂ})
etransclem18.x (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
etransclem18.p (𝜑𝑃 ∈ ℕ)
etransclem18.m (𝜑𝑀 ∈ ℕ0)
etransclem18.f 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
etransclem18.a (𝜑𝐴 ∈ ℝ)
etransclem18.b (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
etransclem18 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑗,𝑀,𝑥   𝑃,𝑗,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   𝐹(𝑥,𝑗)

Proof of Theorem etransclem18
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossicc 12452 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
21a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
3 ioombl 23533 . . 3 (𝐴(,)𝐵) ∈ dom vol
43a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
5 ere 15018 . . . . . 6 e ∈ ℝ
65recni 10244 . . . . 5 e ∈ ℂ
76a1i 11 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → e ∈ ℂ)
8 etransclem18.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
9 etransclem18.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
108, 9iccssred 40230 . . . . . . 7 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
1110sselda 3744 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
1211recnd 10260 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
1312negcld 10571 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
147, 13cxpcld 24653 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
15 etransclem18.s . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
16 etransclem18.x . . . . . . 7 (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))
1715, 16dvdmsscn 40654 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
18 etransclem18.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
19 etransclem18.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))
2017, 18, 19etransclem8 40962 . . . . 5 (𝜑𝐹:ℝ⟶ℂ)
2120adantr 472 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
2221, 11ffvelrnd 6523 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2314, 22mulcld 10252 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((e↑𝑐-𝑥) · (𝐹𝑥)) ∈ ℂ)
24 eqidd 2761 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) = (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)))
25 oveq2 6821 . . . . . . . . 9 (𝑦 = -𝑥 → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2625adantl 473 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 = -𝑥) → (e↑𝑐𝑦) = (e↑𝑐-𝑥))
2710, 17sstrd 3754 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
2827sselda 3744 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
2928negcld 10571 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → -𝑥 ∈ ℂ)
306a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℂ → e ∈ ℂ)
31 negcl 10473 . . . . . . . . . 10 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
3230, 31cxpcld 24653 . . . . . . . . 9 (𝑥 ∈ ℂ → (e↑𝑐-𝑥) ∈ ℂ)
3328, 32syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) ∈ ℂ)
3424, 26, 29, 33fvmptd 6450 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥) = (e↑𝑐-𝑥))
3534eqcomd 2766 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (e↑𝑐-𝑥) = ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥))
3635mpteq2dva 4896 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)))
37 epr 15135 . . . . . . . . 9 e ∈ ℝ+
38 mnfxr 10288 . . . . . . . . . . 11 -∞ ∈ ℝ*
3938a1i 11 . . . . . . . . . 10 (e ∈ ℝ+ → -∞ ∈ ℝ*)
40 0red 10233 . . . . . . . . . 10 (e ∈ ℝ+ → 0 ∈ ℝ)
41 rpxr 12033 . . . . . . . . . 10 (e ∈ ℝ+ → e ∈ ℝ*)
42 rpgt0 12037 . . . . . . . . . 10 (e ∈ ℝ+ → 0 < e)
4339, 40, 41, 42gtnelioc 40215 . . . . . . . . 9 (e ∈ ℝ+ → ¬ e ∈ (-∞(,]0))
4437, 43ax-mp 5 . . . . . . . 8 ¬ e ∈ (-∞(,]0)
45 eldif 3725 . . . . . . . 8 (e ∈ (ℂ ∖ (-∞(,]0)) ↔ (e ∈ ℂ ∧ ¬ e ∈ (-∞(,]0)))
466, 44, 45mpbir2an 993 . . . . . . 7 e ∈ (ℂ ∖ (-∞(,]0))
47 cxpcncf2 40616 . . . . . . 7 (e ∈ (ℂ ∖ (-∞(,]0)) → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
4846, 47mp1i 13 . . . . . 6 (𝜑 → (𝑦 ∈ ℂ ↦ (e↑𝑐𝑦)) ∈ (ℂ–cn→ℂ))
49 eqid 2760 . . . . . . . 8 (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) = (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥)
5049negcncf 22922 . . . . . . 7 ((𝐴[,]𝐵) ⊆ ℂ → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5127, 50syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ -𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5248, 51cncfmpt1f 22917 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑦 ∈ ℂ ↦ (e↑𝑐𝑦))‘-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
5336, 52eqeltrd 2839 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (e↑𝑐-𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
54 ax-resscn 10185 . . . . . . . 8 ℝ ⊆ ℂ
5554a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ℝ ⊆ ℂ)
5618adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑃 ∈ ℕ)
57 etransclem18.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5857adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑀 ∈ ℕ0)
59 etransclem6 40960 . . . . . . . 8 (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6019, 59eqtri 2782 . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))
6155, 56, 58, 60, 11etransclem13 40967 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
6261mpteq2dva 4896 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
63 fzfid 12966 . . . . . 6 (𝜑 → (0...𝑀) ∈ Fin)
64123adant3 1127 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑥 ∈ ℂ)
65 elfzelz 12535 . . . . . . . . . 10 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℤ)
6665zcnd 11675 . . . . . . . . 9 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℂ)
67663ad2ant3 1130 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
6864, 67subcld 10584 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → (𝑥𝑘) ∈ ℂ)
69 nnm1nn0 11526 . . . . . . . . . 10 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
7018, 69syl 17 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℕ0)
7118nnnn0d 11543 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ0)
7270, 71ifcld 4275 . . . . . . . 8 (𝜑 → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
73723ad2ant1 1128 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
7468, 73expcld 13202 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
75 nfv 1992 . . . . . . 7 𝑥(𝜑𝑘 ∈ (0...𝑀))
76 ssid 3765 . . . . . . . . . . 11 ℂ ⊆ ℂ
7776a1i 11 . . . . . . . . . 10 (𝜑 → ℂ ⊆ ℂ)
7827, 77idcncfg 40588 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7978adantr 472 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑥) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8027adantr 472 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → (𝐴[,]𝐵) ⊆ ℂ)
8166adantl 473 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ)
8276a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑀)) → ℂ ⊆ ℂ)
8380, 81, 82constcncfg 40587 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ 𝑘) ∈ ((𝐴[,]𝐵)–cn→ℂ))
8479, 83subcncf 40585 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝑥𝑘)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
85 expcncf 22926 . . . . . . . . 9 (if(𝑘 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8672, 85syl 17 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
8786adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑦 ∈ ℂ ↦ (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ (ℂ–cn→ℂ))
88 oveq1 6820 . . . . . . 7 (𝑦 = (𝑥𝑘) → (𝑦↑if(𝑘 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
8975, 84, 87, 82, 88cncfcompt2 40615 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9027, 63, 74, 89fprodcncf 40617 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ∏𝑘 ∈ (0...𝑀)((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9162, 90eqeltrd 2839 . . . 4 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ (𝐹𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9253, 91mulcncf 23415 . . 3 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
93 cniccibl 23806 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
948, 9, 92, 93syl3anc 1477 . 2 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
952, 4, 23, 94iblss 23770 1 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1632  wcel 2139  cdif 3712  wss 3715  ifcif 4230  {cpr 4323  cmpt 4881  dom cdm 5266  wf 6045  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   · cmul 10133  -∞cmnf 10264  *cxr 10265  cmin 10458  -cneg 10459  cn 11212  0cn0 11484  +crp 12025  (,)cioo 12368  (,]cioc 12369  [,]cicc 12371  ...cfz 12519  cexp 13054  cprod 14834  eceu 14992  t crest 16283  TopOpenctopn 16284  fldccnfld 19948  cnccncf 22880  volcvol 23432  𝐿1cibl 23585  𝑐ccxp 24501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cc 9449  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-disj 4773  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-ofr 7063  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-prod 14835  df-ef 14997  df-e 14998  df-sin 14999  df-cos 15000  df-tan 15001  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-cmp 21392  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-ovol 23433  df-vol 23434  df-mbf 23587  df-itg1 23588  df-itg2 23589  df-ibl 23590  df-0p 23636  df-limc 23829  df-dv 23830  df-log 24502  df-cxp 24503
This theorem is referenced by:  etransclem23  40977  etransclem46  41000
  Copyright terms: Public domain W3C validator