Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem17 Structured version   Visualization version   GIF version

Theorem etransclem17 40237
Description: The 𝑁-th derivative of 𝐻. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem17.s (𝜑𝑆 ∈ {ℝ, ℂ})
etransclem17.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
etransclem17.p (𝜑𝑃 ∈ ℕ)
etransclem17.1 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem17.J (𝜑𝐽 ∈ (0...𝑀))
etransclem17.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
etransclem17 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Distinct variable groups:   𝑗,𝐽,𝑥   𝑗,𝑀,𝑥   𝑥,𝑁   𝑃,𝑗,𝑥   𝑥,𝑆   𝑗,𝑋,𝑥   𝜑,𝑗,𝑥
Allowed substitution hints:   𝑆(𝑗)   𝐻(𝑥,𝑗)   𝑁(𝑗)

Proof of Theorem etransclem17
StepHypRef Expression
1 etransclem17.1 . . . . . 6 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
2 etransclem17.s . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ {ℝ, ℂ})
3 etransclem17.x . . . . . . . . . . . . . 14 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
42, 3dvdmsscn 39920 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
54sselda 3601 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
65adantlr 751 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑥 ∈ ℂ)
7 elfzelz 12339 . . . . . . . . . . . . 13 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
87zcnd 11480 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
98ad2antlr 763 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → 𝑗 ∈ ℂ)
106, 9negsubd 10395 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥 + -𝑗) = (𝑥𝑗))
1110eqcomd 2627 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → (𝑥𝑗) = (𝑥 + -𝑗))
1211oveq1d 6662 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑥𝑋) → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
1312mpteq2dva 4742 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
1413mpteq2dva 4742 . . . . . 6 (𝜑 → (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
151, 14syl5eq 2667 . . . . 5 (𝜑𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))))
16 negeq 10270 . . . . . . . . 9 (𝑗 = 𝐽 → -𝑗 = -𝐽)
1716oveq2d 6663 . . . . . . . 8 (𝑗 = 𝐽 → (𝑥 + -𝑗) = (𝑥 + -𝐽))
18 eqeq1 2625 . . . . . . . . 9 (𝑗 = 𝐽 → (𝑗 = 0 ↔ 𝐽 = 0))
1918ifbid 4106 . . . . . . . 8 (𝑗 = 𝐽 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2017, 19oveq12d 6665 . . . . . . 7 (𝑗 = 𝐽 → ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
2120mpteq2dv 4743 . . . . . 6 (𝑗 = 𝐽 → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2221adantl 482 . . . . 5 ((𝜑𝑗 = 𝐽) → (𝑥𝑋 ↦ ((𝑥 + -𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
23 etransclem17.J . . . . 5 (𝜑𝐽 ∈ (0...𝑀))
24 mptexg 6481 . . . . . 6 (𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
253, 24syl 17 . . . . 5 (𝜑 → (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
2615, 22, 23, 25fvmptd 6286 . . . 4 (𝜑 → (𝐻𝐽) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
2726oveq2d 6663 . . 3 (𝜑 → (𝑆 D𝑛 (𝐻𝐽)) = (𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))))
2827fveq1d 6191 . 2 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁))
29 etransclem17.n . . 3 (𝜑𝑁 ∈ ℕ0)
30 elfzelz 12339 . . . . . . 7 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℤ)
3130zcnd 11480 . . . . . 6 (𝐽 ∈ (0...𝑀) → 𝐽 ∈ ℂ)
3223, 31syl 17 . . . . 5 (𝜑𝐽 ∈ ℂ)
3332negcld 10376 . . . 4 (𝜑 → -𝐽 ∈ ℂ)
34 etransclem17.p . . . . . 6 (𝜑𝑃 ∈ ℕ)
35 nnm1nn0 11331 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3634, 35syl 17 . . . . 5 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3734nnnn0d 11348 . . . . 5 (𝜑𝑃 ∈ ℕ0)
3836, 37ifcld 4129 . . . 4 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
39 eqid 2621 . . . 4 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
402, 3, 33, 38, 39dvnxpaek 39926 . . 3 ((𝜑𝑁 ∈ ℕ0) → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4129, 40mpdan 702 . 2 (𝜑 → ((𝑆 D𝑛 (𝑥𝑋 ↦ ((𝑥 + -𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4232adantr 481 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
435, 42negsubd 10395 . . . . . 6 ((𝜑𝑥𝑋) → (𝑥 + -𝐽) = (𝑥𝐽))
4443oveq1d 6662 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)) = ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))
4544oveq2d 6663 . . . 4 ((𝜑𝑥𝑋) → (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) = (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))
4645ifeq2d 4103 . . 3 ((𝜑𝑥𝑋) → if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))
4746mpteq2dva 4742 . 2 (𝜑 → (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥 + -𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
4828, 41, 473eqtrd 2659 1 (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  Vcvv 3198  ifcif 4084  {cpr 4177   class class class wbr 4651  cmpt 4727  cfv 5886  (class class class)co 6647  cc 9931  cr 9932  0cc0 9933  1c1 9934   + caddc 9936   · cmul 9938   < clt 10071  cmin 10263  -cneg 10264   / cdiv 10681  cn 11017  0cn0 11289  ...cfz 12323  cexp 12855  !cfa 13055  t crest 16075  TopOpenctopn 16076  fldccnfld 19740   D𝑛 cdvn 23622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-addf 10012  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-fi 8314  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-xneg 11943  df-xadd 11944  df-xmul 11945  df-icc 12179  df-fz 12324  df-fzo 12462  df-seq 12797  df-exp 12856  df-fac 13056  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-starv 15950  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-hom 15960  df-cco 15961  df-rest 16077  df-topn 16078  df-0g 16096  df-gsum 16097  df-topgen 16098  df-pt 16099  df-prds 16102  df-xrs 16156  df-qtop 16161  df-imas 16162  df-xps 16164  df-mre 16240  df-mrc 16241  df-acs 16243  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-submnd 17330  df-mulg 17535  df-cntz 17744  df-cmn 18189  df-psmet 19732  df-xmet 19733  df-met 19734  df-bl 19735  df-mopn 19736  df-fbas 19737  df-fg 19738  df-cnfld 19741  df-top 20693  df-topon 20710  df-topsp 20731  df-bases 20744  df-cld 20817  df-ntr 20818  df-cls 20819  df-nei 20896  df-lp 20934  df-perf 20935  df-cn 21025  df-cnp 21026  df-haus 21113  df-tx 21359  df-hmeo 21552  df-fil 21644  df-fm 21736  df-flim 21737  df-flf 21738  df-xms 22119  df-ms 22120  df-tms 22121  df-cncf 22675  df-limc 23624  df-dv 23625  df-dvn 23626
This theorem is referenced by:  etransclem19  40239  etransclem20  40240  etransclem21  40241  etransclem22  40242
  Copyright terms: Public domain W3C validator