Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem10 Structured version   Visualization version   GIF version

Theorem etransclem10 40979
Description: The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem10.n (𝜑𝑃 ∈ ℕ)
etransclem10.m (𝜑𝑀 ∈ ℕ0)
etransclem10.c (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
etransclem10.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
etransclem10 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)

Proof of Theorem etransclem10
StepHypRef Expression
1 0zd 11589 . 2 ((𝜑 ∧ (𝑃 − 1) < (𝐶‘0)) → 0 ∈ ℤ)
2 0zd 11589 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
3 etransclem10.n . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
4 nnm1nn0 11534 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
53, 4syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
65nn0zd 11680 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℤ)
7 etransclem10.c . . . . . . . . . . . 12 (𝜑𝐶:(0...𝑀)⟶(0...𝑁))
8 etransclem10.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ ℕ0)
9 nn0uz 11923 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
108, 9syl6eleq 2858 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘0))
11 eluzfz1 12554 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘0) → 0 ∈ (0...𝑀))
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑 → 0 ∈ (0...𝑀))
137, 12ffvelrnd 6502 . . . . . . . . . . 11 (𝜑 → (𝐶‘0) ∈ (0...𝑁))
1413elfzelzd 40047 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℤ)
156, 14zsubcld 11687 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
162, 6, 153jca 1120 . . . . . . . 8 (𝜑 → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1716adantr 473 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ))
1814zred 11682 . . . . . . . . . 10 (𝜑 → (𝐶‘0) ∈ ℝ)
1918adantr 473 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ∈ ℝ)
205nn0red 11552 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℝ)
2120adantr 473 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝑃 − 1) ∈ ℝ)
22 simpr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ¬ (𝑃 − 1) < (𝐶‘0))
2319, 21, 22nltled 10387 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐶‘0) ≤ (𝑃 − 1))
2421, 19subge0d 10817 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ↔ (𝐶‘0) ≤ (𝑃 − 1)))
2523, 24mpbird 247 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ ((𝑃 − 1) − (𝐶‘0)))
26 elfzle1 12550 . . . . . . . . . 10 ((𝐶‘0) ∈ (0...𝑁) → 0 ≤ (𝐶‘0))
2713, 26syl 17 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐶‘0))
2827adantr 473 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 0 ≤ (𝐶‘0))
2921, 19subge02d 10819 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (0 ≤ (𝐶‘0) ↔ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1)))
3028, 29mpbid 222 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))
3117, 25, 30jca32 560 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
32 elfz2 12539 . . . . . 6 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) ↔ ((0 ∈ ℤ ∧ (𝑃 − 1) ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ) ∧ (0 ≤ ((𝑃 − 1) − (𝐶‘0)) ∧ ((𝑃 − 1) − (𝐶‘0)) ≤ (𝑃 − 1))))
3331, 32sylibr 224 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)))
34 permnn 13320 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ (0...(𝑃 − 1)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3533, 34syl 17 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℕ)
3635nnzd 11681 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
37 etransclem10.j . . . . 5 (𝜑𝐽 ∈ ℤ)
3837adantr 473 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → 𝐽 ∈ ℤ)
3915adantr 473 . . . . 5 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℤ)
40 elnn0z 11590 . . . . 5 (((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0 ↔ (((𝑃 − 1) − (𝐶‘0)) ∈ ℤ ∧ 0 ≤ ((𝑃 − 1) − (𝐶‘0))))
4139, 25, 40sylanbrc 698 . . . 4 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0)
42 zexpcl 13082 . . . 4 ((𝐽 ∈ ℤ ∧ ((𝑃 − 1) − (𝐶‘0)) ∈ ℕ0) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4338, 41, 42syl2anc 693 . . 3 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (𝐽↑((𝑃 − 1) − (𝐶‘0))) ∈ ℤ)
4436, 43zmulcld 11688 . 2 ((𝜑 ∧ ¬ (𝑃 − 1) < (𝐶‘0)) → (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0)))) ∈ ℤ)
451, 44ifclda 4256 1 (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1069  wcel 2143  ifcif 4222   class class class wbr 4783  wf 6026  cfv 6030  (class class class)co 6791  cr 10135  0cc0 10136  1c1 10137   · cmul 10141   < clt 10274  cle 10275  cmin 10466   / cdiv 10884  cn 11220  0cn0 11492  cz 11577  cuz 11887  ...cfz 12532  cexp 13067  !cfa 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-n0 11493  df-z 11578  df-uz 11888  df-rp 12035  df-fz 12533  df-seq 13009  df-exp 13068  df-fac 13268  df-bc 13297
This theorem is referenced by:  etransclem25  40994  etransclem26  40995  etransclem35  41004  etransclem37  41006
  Copyright terms: Public domain W3C validator