Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem1 Structured version   Visualization version   GIF version

Theorem etransclem1 40924
Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem1.x (𝜑𝑋 ⊆ ℂ)
etransclem1.p (𝜑𝑃 ∈ ℕ)
etransclem1.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem1.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem1 (𝜑 → (𝐻𝐽):𝑋⟶ℂ)
Distinct variable groups:   𝑥,𝐽   𝑗,𝑀   𝑃,𝑗   𝑗,𝑋,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝑃(𝑥)   𝐻(𝑥,𝑗)   𝐽(𝑗)   𝑀(𝑥)

Proof of Theorem etransclem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 etransclem1.x . . . . . 6 (𝜑𝑋 ⊆ ℂ)
21sselda 3732 . . . . 5 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
3 etransclem1.j . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
43elfzelzd 39997 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
54zcnd 11646 . . . . . 6 (𝜑𝐽 ∈ ℂ)
65adantr 472 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
72, 6subcld 10555 . . . 4 ((𝜑𝑥𝑋) → (𝑥𝐽) ∈ ℂ)
8 etransclem1.p . . . . . . 7 (𝜑𝑃 ∈ ℕ)
9 nnm1nn0 11497 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
108, 9syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
118nnnn0d 11514 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
1210, 11ifcld 4263 . . . . 5 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
1312adantr 472 . . . 4 ((𝜑𝑥𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
147, 13expcld 13173 . . 3 ((𝜑𝑥𝑋) → ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
15 eqid 2748 . . 3 (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
1614, 15fmptd 6536 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)
17 etransclem1.h . . . . . 6 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
18 oveq2 6809 . . . . . . . . 9 (𝑗 = 𝑛 → (𝑥𝑗) = (𝑥𝑛))
19 eqeq1 2752 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0))
2019ifbid 4240 . . . . . . . . 9 (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃))
2118, 20oveq12d 6819 . . . . . . . 8 (𝑗 = 𝑛 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))
2221mpteq2dv 4885 . . . . . . 7 (𝑗 = 𝑛 → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2322cbvmptv 4890 . . . . . 6 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2417, 23eqtri 2770 . . . . 5 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2524a1i 11 . . . 4 (𝜑𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))))
26 oveq2 6809 . . . . . . 7 (𝑛 = 𝐽 → (𝑥𝑛) = (𝑥𝐽))
27 eqeq1 2752 . . . . . . . 8 (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0))
2827ifbid 4240 . . . . . . 7 (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2926, 28oveq12d 6819 . . . . . 6 (𝑛 = 𝐽 → ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
3029mpteq2dv 4885 . . . . 5 (𝑛 = 𝐽 → (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
3130adantl 473 . . . 4 ((𝜑𝑛 = 𝐽) → (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
32 cnex 10180 . . . . . 6 ℂ ∈ V
3332ssex 4942 . . . . 5 (𝑋 ⊆ ℂ → 𝑋 ∈ V)
34 mptexg 6636 . . . . 5 (𝑋 ∈ V → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
351, 33, 343syl 18 . . . 4 (𝜑 → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
3625, 31, 3, 35fvmptd 6438 . . 3 (𝜑 → (𝐻𝐽) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
3736feq1d 6179 . 2 (𝜑 → ((𝐻𝐽):𝑋⟶ℂ ↔ (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ))
3816, 37mpbird 247 1 (𝜑 → (𝐻𝐽):𝑋⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1620  wcel 2127  Vcvv 3328  wss 3703  ifcif 4218  cmpt 4869  wf 6033  cfv 6037  (class class class)co 6801  cc 10097  0cc0 10099  1c1 10100  cmin 10429  cn 11183  0cn0 11455  ...cfz 12490  cexp 13025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-seq 12967  df-exp 13026
This theorem is referenced by:  etransclem29  40952
  Copyright terms: Public domain W3C validator