Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem1 Structured version   Visualization version   GIF version

Theorem etransclem1 40924
 Description: 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem1.x (𝜑𝑋 ⊆ ℂ)
etransclem1.p (𝜑𝑃 ∈ ℕ)
etransclem1.h 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
etransclem1.j (𝜑𝐽 ∈ (0...𝑀))
Assertion
Ref Expression
etransclem1 (𝜑 → (𝐻𝐽):𝑋⟶ℂ)
Distinct variable groups:   𝑥,𝐽   𝑗,𝑀   𝑃,𝑗   𝑗,𝑋,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝑃(𝑥)   𝐻(𝑥,𝑗)   𝐽(𝑗)   𝑀(𝑥)

Proof of Theorem etransclem1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 etransclem1.x . . . . . 6 (𝜑𝑋 ⊆ ℂ)
21sselda 3732 . . . . 5 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
3 etransclem1.j . . . . . . . 8 (𝜑𝐽 ∈ (0...𝑀))
43elfzelzd 39997 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
54zcnd 11646 . . . . . 6 (𝜑𝐽 ∈ ℂ)
65adantr 472 . . . . 5 ((𝜑𝑥𝑋) → 𝐽 ∈ ℂ)
72, 6subcld 10555 . . . 4 ((𝜑𝑥𝑋) → (𝑥𝐽) ∈ ℂ)
8 etransclem1.p . . . . . . 7 (𝜑𝑃 ∈ ℕ)
9 nnm1nn0 11497 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
108, 9syl 17 . . . . . 6 (𝜑 → (𝑃 − 1) ∈ ℕ0)
118nnnn0d 11514 . . . . . 6 (𝜑𝑃 ∈ ℕ0)
1210, 11ifcld 4263 . . . . 5 (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
1312adantr 472 . . . 4 ((𝜑𝑥𝑋) → if(𝐽 = 0, (𝑃 − 1), 𝑃) ∈ ℕ0)
147, 13expcld 13173 . . 3 ((𝜑𝑥𝑋) → ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)) ∈ ℂ)
15 eqid 2748 . . 3 (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
1614, 15fmptd 6536 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ)
17 etransclem1.h . . . . . 6 𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))
18 oveq2 6809 . . . . . . . . 9 (𝑗 = 𝑛 → (𝑥𝑗) = (𝑥𝑛))
19 eqeq1 2752 . . . . . . . . . 10 (𝑗 = 𝑛 → (𝑗 = 0 ↔ 𝑛 = 0))
2019ifbid 4240 . . . . . . . . 9 (𝑗 = 𝑛 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑛 = 0, (𝑃 − 1), 𝑃))
2118, 20oveq12d 6819 . . . . . . . 8 (𝑗 = 𝑛 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))
2221mpteq2dv 4885 . . . . . . 7 (𝑗 = 𝑛 → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2322cbvmptv 4890 . . . . . 6 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2417, 23eqtri 2770 . . . . 5 𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))))
2524a1i 11 . . . 4 (𝜑𝐻 = (𝑛 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)))))
26 oveq2 6809 . . . . . . 7 (𝑛 = 𝐽 → (𝑥𝑛) = (𝑥𝐽))
27 eqeq1 2752 . . . . . . . 8 (𝑛 = 𝐽 → (𝑛 = 0 ↔ 𝐽 = 0))
2827ifbid 4240 . . . . . . 7 (𝑛 = 𝐽 → if(𝑛 = 0, (𝑃 − 1), 𝑃) = if(𝐽 = 0, (𝑃 − 1), 𝑃))
2926, 28oveq12d 6819 . . . . . 6 (𝑛 = 𝐽 → ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃)) = ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃)))
3029mpteq2dv 4885 . . . . 5 (𝑛 = 𝐽 → (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
3130adantl 473 . . . 4 ((𝜑𝑛 = 𝐽) → (𝑥𝑋 ↦ ((𝑥𝑛)↑if(𝑛 = 0, (𝑃 − 1), 𝑃))) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
32 cnex 10180 . . . . . 6 ℂ ∈ V
3332ssex 4942 . . . . 5 (𝑋 ⊆ ℂ → 𝑋 ∈ V)
34 mptexg 6636 . . . . 5 (𝑋 ∈ V → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
351, 33, 343syl 18 . . . 4 (𝜑 → (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))) ∈ V)
3625, 31, 3, 35fvmptd 6438 . . 3 (𝜑 → (𝐻𝐽) = (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))))
3736feq1d 6179 . 2 (𝜑 → ((𝐻𝐽):𝑋⟶ℂ ↔ (𝑥𝑋 ↦ ((𝑥𝐽)↑if(𝐽 = 0, (𝑃 − 1), 𝑃))):𝑋⟶ℂ))
3816, 37mpbird 247 1 (𝜑 → (𝐻𝐽):𝑋⟶ℂ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1620   ∈ wcel 2127  Vcvv 3328   ⊆ wss 3703  ifcif 4218   ↦ cmpt 4869  ⟶wf 6033  ‘cfv 6037  (class class class)co 6801  ℂcc 10097  0cc0 10099  1c1 10100   − cmin 10429  ℕcn 11183  ℕ0cn0 11455  ...cfz 12490  ↑cexp 13025 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-n0 11456  df-z 11541  df-uz 11851  df-fz 12491  df-seq 12967  df-exp 13026 This theorem is referenced by:  etransclem29  40952
 Copyright terms: Public domain W3C validator